Ultra-Light-Fast-Generic-Face-Detector-1MB 使用教程

Ultra-Light-Fast-Generic-Face-Detector-1MB 使用教程

1. 项目目录结构及介绍

Ultra-Light-Fast-Generic-Face-Detector-1MB/
├── configs/
│   ├── RFB-320.json
│   ├── RFB-640.json
│   ├── slim-320.json
│   └── slim-640.json
├── data/
│   ├── wider_face/
│   └── README.md
├── demo/
│   ├── image_demo.py
│   ├── video_demo.py
│   └── webcam_demo.py
├── models/
│   ├── RFB-320.pth
│   ├── RFB-640.pth
│   ├── slim-320.pth
│   └── slim-640.pth
├── README.md
├── requirements.txt
├── test.py
├── train.py
└── utils/
    ├── box_utils.py
    ├── data_augment.py
    ├── logger.py
    ├── onnx_converter.py
    └── visualization.py

目录结构说明

  • configs/: 包含不同模型的配置文件。
    • RFB-320.json, RFB-640.json, slim-320.json, slim-640.json: 分别为不同版本的模型配置文件。
  • data/: 存放数据集相关文件。
    • wider_face/: WIDER FACE 数据集目录。
    • README.md: 数据集说明文档。
  • demo/: 包含图像、视频和摄像头演示脚本。
    • image_demo.py: 图像人脸检测演示脚本。
    • video_demo.py: 视频人脸检测演示脚本。
    • webcam_demo.py: 摄像头实时人脸检测演示脚本。
  • models/: 存放预训练模型文件。
    • RFB-320.pth, RFB-640.pth, slim-320.pth, slim-640.pth: 分别为不同版本的预训练模型。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖文件。
  • test.py: 测试脚本。
  • train.py: 训练脚本。
  • utils/: 工具函数和辅助脚本。
    • box_utils.py: 边界框处理工具。
    • data_augment.py: 数据增强工具。
    • logger.py: 日志记录工具。
    • onnx_converter.py: ONNX 模型转换工具。
    • visualization.py: 可视化工具。

2. 项目启动文件介绍

demo/image_demo.py

该脚本用于对单张图像进行人脸检测。使用方法如下:

python demo/image_demo.py --config configs/RFB-320.json --model models/RFB-320.pth --image path/to/image.jpg

demo/video_demo.py

该脚本用于对视频文件进行人脸检测。使用方法如下:

python demo/video_demo.py --config configs/RFB-320.json --model models/RFB-320.pth --video path/to/video.mp4

demo/webcam_demo.py

该脚本用于通过摄像头实时进行人脸检测。使用方法如下:

python demo/webcam_demo.py --config configs/RFB-320.json --model models/RFB-320.pth

3. 项目的配置文件介绍

configs/RFB-320.json

该配置文件定义了RFB-320模型的参数,包括输入尺寸、锚点设置、训练参数等。主要字段如下:

{
    "name": "RFB-320",
    "min_sizes": [[16, 32], [64, 128], [256, 512]],
    "steps": [8

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值