Ultra-Light-Fast-Generic-Face-Detector-1MB 使用教程
1. 项目目录结构及介绍
Ultra-Light-Fast-Generic-Face-Detector-1MB/
├── configs/
│ ├── RFB-320.json
│ ├── RFB-640.json
│ ├── slim-320.json
│ └── slim-640.json
├── data/
│ ├── wider_face/
│ └── README.md
├── demo/
│ ├── image_demo.py
│ ├── video_demo.py
│ └── webcam_demo.py
├── models/
│ ├── RFB-320.pth
│ ├── RFB-640.pth
│ ├── slim-320.pth
│ └── slim-640.pth
├── README.md
├── requirements.txt
├── test.py
├── train.py
└── utils/
├── box_utils.py
├── data_augment.py
├── logger.py
├── onnx_converter.py
└── visualization.py
目录结构说明
configs/
: 包含不同模型的配置文件。RFB-320.json
,RFB-640.json
,slim-320.json
,slim-640.json
: 分别为不同版本的模型配置文件。
data/
: 存放数据集相关文件。wider_face/
: WIDER FACE 数据集目录。README.md
: 数据集说明文档。
demo/
: 包含图像、视频和摄像头演示脚本。image_demo.py
: 图像人脸检测演示脚本。video_demo.py
: 视频人脸检测演示脚本。webcam_demo.py
: 摄像头实时人脸检测演示脚本。
models/
: 存放预训练模型文件。RFB-320.pth
,RFB-640.pth
,slim-320.pth
,slim-640.pth
: 分别为不同版本的预训练模型。
README.md
: 项目说明文档。requirements.txt
: 项目依赖文件。test.py
: 测试脚本。train.py
: 训练脚本。utils/
: 工具函数和辅助脚本。box_utils.py
: 边界框处理工具。data_augment.py
: 数据增强工具。logger.py
: 日志记录工具。onnx_converter.py
: ONNX 模型转换工具。visualization.py
: 可视化工具。
2. 项目启动文件介绍
demo/image_demo.py
该脚本用于对单张图像进行人脸检测。使用方法如下:
python demo/image_demo.py --config configs/RFB-320.json --model models/RFB-320.pth --image path/to/image.jpg
demo/video_demo.py
该脚本用于对视频文件进行人脸检测。使用方法如下:
python demo/video_demo.py --config configs/RFB-320.json --model models/RFB-320.pth --video path/to/video.mp4
demo/webcam_demo.py
该脚本用于通过摄像头实时进行人脸检测。使用方法如下:
python demo/webcam_demo.py --config configs/RFB-320.json --model models/RFB-320.pth
3. 项目的配置文件介绍
configs/RFB-320.json
该配置文件定义了RFB-320模型的参数,包括输入尺寸、锚点设置、训练参数等。主要字段如下:
{
"name": "RFB-320",
"min_sizes": [[16, 32], [64, 128], [256, 512]],
"steps": [8
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考