在stanford-crfm/helm项目中添加自定义分词器指南

在stanford-crfm/helm项目中添加自定义分词器指南

理解分词器在HELM项目中的作用

在自然语言处理(NLP)领域,分词器(Tokenizer)是将原始文本转换为模型可处理token序列的关键组件。stanford-crfm/helm项目作为一个综合性语言模型评估框架,内置了多种分词器支持,但开发者有时需要为自定义模型添加特定的分词器。

添加自定义分词器的步骤

1. 创建分词器配置文件

首先需要在本地配置目录(如./prod_env/)下创建名为tokenizer_configs.yaml的文件。这个文件将包含YAML格式的TokenizerConfigs对象配置。

2. 配置文件结构详解

配置文件采用YAML格式,支持多种分词器类型。以下是主要配置项说明:

  • name: 分词器的唯一标识名称
  • tokenizer_spec: 分词器规格定义
    • class_name: 分词器实现类的完整路径
    • args: 分词器初始化参数
  • end_of_text_token: 文本结束标记
  • prefix_token: 文本前缀标记

添加Hugging Face分词器

Hugging Face是当前最流行的NLP库之一,HELM项目提供了对Hugging Face分词器的原生支持。

基础配置示例

tokenizer_configs:
  - name: bigscience/bloom
    tokenizer_spec:
      class_name: "helm.tokenizers.huggingface_tokenizer.HuggingFaceTokenizer"
      args:
        pretrained_model_name_or_path: bigscience/bloom
    end_of_text_token: "<s>"
    prefix_token: "</s>"

简化配置方式

如果省略pretrained_model_name_or_path参数,系统会默认使用name作为模型ID从Hugging Face Hub加载:

tokenizer_configs:
  - name: bigscience/bloom
    tokenizer_spec:
      class_name: "helm.tokenizers.huggingface_tokenizer.HuggingFaceTokenizer"
    end_of_text_token: "<s>"
    prefix_token: "</s>"

本地分词器支持

pretrained_model_name_or_path也可以设置为本地路径,加载本地的Hugging Face分词器。

确定特殊标记值

正确设置end_of_text_tokenprefix_token对模型性能至关重要。可以通过以下Python代码获取这些值:

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom")
print(f'end_of_text_token: "{tokenizer.eos_token}"\nprefix_token: "{tokenizer.bos_token}"')

如果某个特殊标记未知,应将其设置为空字符串""

注意事项

  1. 特殊标记验证:HELM不会自动推断特殊标记信息,因为Hugging Face模型中心的一些分词器可能有错误或缺失的特殊标记值,必须手动设置并验证。

  2. 模型部署使用:添加分词器配置后,可以在自定义模型部署中通过设置tokenizer字段来指定使用该分词器。

  3. 兼容性考虑:确保所选分词器与目标模型兼容,特别是词汇表大小和特殊标记定义。

最佳实践建议

  1. 对于生产环境,建议优先使用本地存储的分词器文件,避免网络依赖
  2. 对关键分词器配置进行单元测试,验证特殊标记是否正确处理
  3. 在团队内部维护一份常用分词器配置文档,避免重复工作
  4. 对于自定义模型,考虑创建专用的分词器实现以获得最佳性能

通过以上步骤,开发者可以灵活地为stanford-crfm/helm项目添加各种自定义分词器,满足不同语言模型的评估需求。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

娄佳淑Floyd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值