IndicLLMSuite:构建印度语言预训练和微调数据集的蓝图
项目介绍
IndicLLMSuite 是一个开源项目,致力于为印度语言创建预训练和微调数据集。该项目荣获了 ACL 2024 杰出论文奖,并提供了包括数据集、代码和其他相关资源在内的一系列工具,以推动印度语言大型语言模型(LLM)的发展。
项目技术分析
IndicLLMSuite 包括了三个核心组件:预训练数据集 Sangraha、指令微调数据集 IndicAlign 以及一系列数据处理管道和数据资源。以下是详细的技术分析:
Sangraha
Sangraha 是一个高质量、经过清理的印度语言预训练数据集,包含超过 2510 亿个标记,涵盖 22 种语言。数据来源于经过人工验证的网站、高质量的印度语言 PDF、视频、播客、电影和课程等。Sangraha 包含以下三个部分:
- Sangraha 验证:包含从"人工验证"的网站抓取的数据、从高质量印度语言 PDF 中提取的 OCR 数据以及从各种印度语言视频中转录的数据。
- Sangraha 未验证:从现有双语语料库中提取的高质量印度语言数据。
- Sangraha 合成:将公开知识库英语翻译为 14 种印度语言,并通过音译转换为英语。
IndicAlign
IndicAlign 是一个包含约 7470 万个提示-响应对的印度语言多语言指令微调数据集。数据通过四种方法收集:聚合现有的指令微调数据集、将高质量英语数据集翻译为 14 种印度语言、使用印度-centric 公开知识库文章生成合成数据,以及建立一个名为 Anudesh 的众包平台进行提示收集。IndicAlign 分为两个不同的部分:IndicAlign-Instruct 和 IndicAlign-Toxic。
数据管道
项目还提供了三个数据处理管道:Setu、Setu-translate 和 Setu-transliterate,用于数据清洗、翻译和音译。
- Setu:用于数据清洗、过滤和去重的综合管道。
- Setu-translate:用于执行大规模结构保留翻译的管道。
- Setu-transliterate:用于执行大规模结构保留音译的管道。
项目技术应用场景
IndicLLMSuite 的核心功能和应用场景在于:
- 印度语言模型的预训练和微调:通过 Sangraha 和 IndicAlign 数据集,研究人员和开发者可以训练和微调印度语言模型,提高其在印度语言处理任务上的性能。
- 教育和研究:项目提供的资源可以帮助教育工作者和研究人员更好地理解和利用印度语言数据。
- 产品开发:对于开发印度语言相关产品的公司来说,这些数据集和工具提供了宝贵的基础设施。
项目特点
IndicLLMSuite 具有以下显著特点:
- 全面性:项目提供了最大的印度语言预训练和指令微调数据集。
- 高质量:通过人工验证和综合的数据清洗流程,确保了数据的高质量。
- 多样性:包含多种印度语言,适用于多种应用场景。
- 开源共享:所有代码和资源均开源共享,促进了社区的共同进步。
通过 IndicLLMSuite,研究人员和开发者可以获得构建印度语言模型的坚实基础,为印度语言的人工智能应用带来新的可能性。我们强烈推荐有兴趣的用户尝试并使用这个优秀的数据集和工具套件。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考