Phi-3模型在Azure AI Foundry中的快速入门指南
前言
随着生成式AI技术的快速发展,企业需要一个统一的平台来管理不同规模的语言模型(LLM/SLM)、整合企业数据、执行微调/检索增强生成操作,以及评估模型在业务场景中的表现。Azure AI Foundry正是这样一个企业级生成式AI应用平台,本文将详细介绍如何在Azure AI Foundry中快速部署和使用Phi-3模型。
Azure AI Foundry简介
Azure AI Foundry是一个功能强大的企业级AI平台,主要提供以下核心能力:
- 模型评估与管理:支持对大语言模型(LLM)响应进行评估
- 提示工程:通过提示流(prompt flow)编排应用组件以获得更好性能
- 生产部署:轻松将概念验证转化为生产环境
- 持续监控:支持长期性能监控和优化
环境准备
1. 创建Azure AI Foundry项目
在Azure AI Foundry中,项目是组织和管理AI工作的基本单元。创建步骤如下:
- 登录Azure AI Foundry门户
- 点击左上角的"Azure AI Foundry"返回主页
- 选择"+创建项目"
- 输入项目名称
- 选择现有hub或创建新hub
- 点击"创建"按钮
2. 创建Hub(可选)
Hub是更高层次的组织单元,可以包含多个项目:
- 从左侧菜单选择"管理中心"
- 选择"所有资源"
- 点击"+新项目"旁边的下拉箭头,选择"+新hub"
- 在对话框中输入hub名称
- 点击"下一步"并确认信息
- 点击"创建"
Phi-3模型部署
1. 访问模型目录
- 在项目中点击"探索"选项
- 进入模型目录
- 搜索并选择Phi-3模型系列
- 具体选择Phi-3-mini-4k-instruct版本
2. 部署模型
- 点击"部署"按钮
- 选择适当的计算资源
- 确认部署参数
- 开始部署过程
技术提示:部署时可选择不同规格的计算资源,小型模型如Phi-3-mini通常不需要高端GPU。
模型交互与测试
1. Playground聊天测试
- 进入部署页面
- 选择"Playground"选项
- 开始与部署的Phi-3模型进行交互式对话
- 测试不同提示和问题
2. API访问
部署完成后,可以通过以下方式使用API:
- 获取部署终端的Target URL和Secret Key
- 使用Postman等工具访问API
- 通过GET请求获取swagger.json接口文档
- 了解请求和响应参数格式
进阶使用
1. 模型微调
Azure AI Foundry支持对Phi-3模型进行微调:
- 准备特定领域的数据集
- 配置微调参数
- 启动微调任务
- 评估微调后模型性能
2. 评估与监控
- 设置评估指标
- 运行批量测试
- 监控模型性能指标
- 根据结果优化提示或模型
最佳实践建议
- 资源规划:根据预期负载合理选择计算资源
- 安全考虑:妥善保管API密钥,使用最小权限原则
- 性能优化:对于高频使用场景,考虑部署多个实例
- 成本控制:监控使用量,设置预算警报
结语
通过Azure AI Foundry平台,开发者可以轻松部署和管理Phi-3等先进语言模型。平台提供的完整工具链涵盖了从模型部署、测试到生产应用的全流程,大大降低了企业采用生成式AI技术的门槛。建议初次使用者先从Playground交互开始,逐步探索更高级的功能。
注意:使用Azure AI Foundry需要账号具有相应资源组的Azure AI开发者角色权限。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考