Agentic AI项目中的FastAPI应用冒烟测试指南

Agentic AI项目中的FastAPI应用冒烟测试指南

引言

在Agentic AI项目的开发过程中,FastAPI作为现代Python Web框架被广泛应用于构建高性能API服务。本文将详细介绍如何为FastAPI应用执行全面的冒烟测试(Smoke Testing),确保应用在部署后能够正常运行。

什么是冒烟测试?

冒烟测试是一种轻量级的软件测试方法,用于验证系统的基本功能是否正常工作。它就像"冒烟"一样快速检测系统是否存在明显问题,通常作为部署后的第一步验证。

测试准备

在开始测试前,请确保满足以下条件:

  1. Python 3.8或更高版本已安装
  2. FastAPI应用已部署并运行
  3. 获取到应用的访问URL或端点
  4. 了解基本的API测试概念

测试内容详解

1. 基础设施验证

1.1 应用状态检查
async def check_application_status(base_url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(f"{base_url}/health")
            return response.status_code == 200
        except Exception as e:
            print(f"应用状态检查错误: {e}")
            return False

这段代码会检查应用的/health端点是否返回200状态码,这是应用正常运行的最基本指标。

1.2 环境变量验证
async def check_environment(base_url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(f"{base_url}/env")
            env_vars = response.json()
            required_vars = ["DATABASE_URL", "API_KEY", "ENVIRONMENT"]
            missing = [var for var in required_vars if var not in env_vars]
            if missing:
                print(f"缺少环境变量: {missing}")
                return False
            return True

验证应用是否配置了所有必需的环境变量,这对于应用正常运行至关重要。

2. 应用健康检查

2.1 基础健康端点
async def test_health_endpoint(base_url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(f"{base_url}/health")
            return {
                "status": response.status_code == 200,
                "response_time": response.elapsed.total_seconds() * 1000,
                "body": response.json()
            }

不仅检查状态码,还记录响应时间和返回内容,提供更全面的健康状态信息。

2.2 数据库连接测试
async def test_database_connection(base_url: str):
    async with httpx.AsyncClient() as client:
        try:
            # 测试Postgres连接
            response = await client.get(f"{base_url}/postgres/health")
            postgres_health = {
                "status": response.status_code == 200,
                "response_time": response.elapsed.total_seconds() * 1000,
                "body": response.json()
            }
            
            # 测试Redis连接
            response = await client.get(f"{base_url}/redis/health")
            redis_health = {
                "status": response.status_code == 200,
                "response_time": response.elapsed.total_seconds() * 1000,
                "body": response.json()
            }

对于依赖多种数据库的应用,需要分别测试每种数据库的连接状态。

3. 核心功能测试

3.1 API端点测试
async def test_api_endpoints(base_url: str, endpoints: List[Dict]):
    results = []
    async with httpx.AsyncClient() as client:
        for endpoint in endpoints:
            try:
                if endpoint["method"] == "GET":
                    response = await client.get(f"{base_url}{endpoint['path']}")
                else:
                    response = await client.post(
                        f"{base_url}{endpoint['path']}",
                        json=endpoint.get("data", {})
                    )
                results.append({
                    "endpoint": endpoint["path"],
                    "method": endpoint["method"],
                    "status": response.status_code == 200,
                    "response_time": response.elapsed.total_seconds() * 1000
                })

测试所有关键API端点,包括GET和POST请求,记录每个端点的状态和响应时间。

3.2 认证测试
async def test_authentication(base_url: str, api_key: str):
    async with httpx.AsyncClient() as client:
        headers = {"Authorization": f"Bearer {api_key}"}
        try:
            response = await client.get(
                f"{base_url}/api/v1/secure",
                headers=headers
            )
            return {
                "status": response.status_code == 200,
                "response_time": response.elapsed.total_seconds() * 1000
            }

验证API的认证机制是否正常工作,确保只有授权用户可以访问受保护资源。

4. 性能检查

4.1 响应时间测量
async def measure_response_times(base_url: str, num_requests: int = 10):
    times: List[float] = []
    async with httpx.AsyncClient() as client:
        for _ in range(num_requests):
            try:
                response = await client.get(f"{base_url}/health")
                times.append(response.elapsed.total_seconds() * 1000)
    
    if times:
        return {
            "average": statistics.mean(times),
            "median": statistics.median(times),
            "p95": statistics.quantiles(times, n=20)[18]
        }

通过多次请求计算平均响应时间、中位数和95分位数,全面评估API性能。

4.2 并发请求测试
async def test_concurrent_requests(base_url: str, num_requests: int = 10):
    async with httpx.AsyncClient() as client:
        tasks = []
        for _ in range(num_requests):
            task = client.get(f"{base_url}/health")
            tasks.append(task)
        
        responses = await asyncio.gather(*tasks, return_exceptions=True)
        success_count = sum(1 for r in responses if isinstance(r, httpx.Response) and r.status_code == 200)

模拟多个并发请求,测试应用在高负载下的表现和稳定性。

5. 日志和监控检查

5.1 日志检查
async def check_application_logs(base_url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(f"{base_url}/logs")
            logs = response.json()
            error_logs = [log for log in logs if log["level"] == "ERROR"]
            return {
                "total_logs": len(logs),
                "error_logs": len(error_logs),
                "has_errors": len(error_logs) > 0
            }

检查应用日志,特别关注错误日志,帮助发现潜在问题。

5.2 监控指标检查
async def check_application_metrics(base_url: str):
    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(f"{base_url}/metrics")
            metrics = response.json()
            return {
                "cpu_usage": metrics.get("cpu_usage"),
                "memory_usage": metrics.get("memory_usage"),
                "request_count": metrics.get("request_count")
            }

获取CPU、内存使用率和请求数等关键指标,评估系统资源使用情况。

综合测试脚本

将所有测试整合到一个完整的测试类中:

class SmokeTest:
    def __init__(self, base_url: str, api_key: str):
        self.base_url = base_url
        self.api_key = api_key
        self.results: Dict = {}

    async def run_all_tests(self):
        self.results["timestamp"] = datetime.now().isoformat()
        
        # 执行所有测试...
        self.results["application_status"] = await self.check_application_status()
        self.results["environment"] = await self.check_environment()
        # 其他测试...
        
        return self.results

常见问题与解决方案

  1. 连接超时

    • 原因:网络问题或服务未启动
    • 解决:检查网络连接和服务状态
    • 预防:实现重试机制和超时设置
  2. 认证失败

    • 原因:API密钥错误或过期
    • 解决:验证密钥有效性
    • 预防:实现密钥轮换和过期提醒
  3. 性能下降

    • 原因:资源不足或代码效率低
    • 解决:优化代码或增加资源
    • 预防:设置性能基准和监控

最佳实践

  1. 测试策略

    • 从基础检查开始,逐步深入
    • 定期执行冒烟测试
    • 记录每次测试结果
  2. 错误处理

    • 捕获并记录所有异常
    • 实现优雅降级
    • 创建常见问题解决方案文档
  3. 监控

    • 设置关键指标阈值
    • 实现自动告警
    • 定期审查日志

总结

本文详细介绍了Agentic AI项目中FastAPI应用的冒烟测试方法,涵盖了从基础设施验证到性能监控的各个方面。通过实施这些测试,可以确保应用部署后的稳定性和可靠性。建议将测试脚本集成到CI/CD流程中,实现自动化测试。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/9648a1f24758 Java JDK(Java Development Kit)是Java编程语言的核心组件,为开发和运行Java程序提供了必要的工具和环境。JDK 8是Oracle公司推出的一个重要版本,它引入了许多新特性和改进,极大地提升了开发效率和代码质量,对开发者来说具有极高的实用价值。 本次提供的“jdk-8u251-macosx-x64.dmg”安装包是专为Mac OS X系统设计的64位版本,其中不仅包含了Java运行环境(JRE),还涵盖了丰富的开发工具,方便用户在Mac平台上进行Java程序的开发与运行。 JDK 8的关键更新和特性如下: Lambda表达式:这是JDK 8的一项重大语法创新,允许开发者使用简洁的匿名函数替代复杂的多行回调代码,从而使代码更加简洁、易读且高效。 方法引用与构造器引用:与Lambda表达式配合使用,可以更直观地引用已有的方法或构造器,进一步减少冗余代码,提升代码的可维护性。 Stream API:这是一个用于处理集合的新API,采用声明式处理方式,使集合操作(如过滤、映射和归约等)更加高效且易于理解。 日期和时间API的改进:JDK 8对日期和时间API进行了重构,引入了java.time包,包含LocalDate、LocalTime和LocalDateTime等类,替代了原有的java.util.Date和java.util.Calendar,使日期和时间的处理更加友好和灵活。 Optional类:为解决null对象导致的空指针异常问题,JDK 8引入了Optional类,它是一个容器对象,可以表示一个值存在或不存在,从而有效避免空指针异常。 接口的默认方法和静态方法:接口现在可以定义默认方法(使用default关键字)和静态方法。默认方法允许在不破坏向后
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翟培任Lame

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值