BeakerX项目中的Python交互式图表API详解

BeakerX项目中的Python交互式图表API详解

概述

BeakerX项目提供了一个强大的Python交互式图表API,允许开发者创建丰富多样的数据可视化效果。这个API设计简洁直观,与Groovy语法风格相似,使得熟悉其他可视化库的用户能够快速上手。

基础图表创建

创建基本图表

要创建一个基础图表,首先需要导入必要的模块:

from beakerx import *
import pandas as pd

然后可以创建一个简单的图表,设置标题、坐标轴标签等基本属性:

Plot(title="示例标题",
     xLabel="X轴",
     yLabel="Y轴",
     initWidth=500,
     initHeight=200)

图表元素详解

线条、柱状图和点图

BeakerX支持多种图表元素的组合展示,包括线条、柱状图和点图:

x = [1, 4, 6, 8, 10]
y = [3, 6, 4, 5, 9]

pp = Plot(title='组合图表示例', 
          xLabel="X轴", 
          yLabel="Y轴",
          legendLayout=LegendLayout.HORIZONTAL,
          legendPosition=LegendPosition.RIGHT)

pp.add(Bars(displayName="柱状图", 
       x=[1,3,5,7,10], 
       y=[100, 120,90,100,80], 
       width=1))
pp.add(Line(displayName="线条", 
            x=x, 
            y=y, 
            width=6))
pp.add(Points(x=x, 
              y=y, 
              size=10, 
              shape=ShapeType.DIAMOND))

线条样式定制

可以自定义线条的多种属性:

plot = Plot(title= "线条样式示例")
ys = [0, 1, 6, 5, 2, 8]
plot.add(Line(y= ys, width= 10, color= Color.red))
plot.add(Line(y= ys, width= 3, color= Color.yellow))
plot.add(Line(y= ys, width= 4, color= Color(33, 87, 141), style= StrokeType.DASH))

点图样式定制

点图的形状、大小和颜色都可以自定义:

plot = Plot(title= "点图样式示例")
y1 = [6, 7, 12, 11, 8, 14]
plot.add(Points(y= y1, size= 12.0, color= Color.orange, outlineColor= Color.red))

高级图表功能

区域图和茎叶图

plot = Plot()
y1 = [4, 8, 16, 20, 32]
base = [2, 4, 8, 10, 16]
plot.add(Area(y=y1, base=base, color=Color(255, 0, 0, 50)))
plot.add(Stems(y=y1, base=base, color=Color.black, width=5))

参考线和参考区域

可以添加水平和垂直的参考线:

p = Plot()
p.add(Line(y=[-1, 1]))
p.add(ConstantLine(x=0.65, style=StrokeType.DOT, color=Color.blue))
p.add(ConstantLine(y=0.1, style=StrokeType.DASHDOT, color=Color.blue))

也可以添加参考区域:

Plot().add(Line(y=[-3, 1, 3, 4, 5])).add(ConstantBand(x=[1, 2], y=[1, 3]))

时间序列图表

BeakerX特别适合处理时间序列数据:

plot = TimePlot(timeZone="America/New_York")
plot.add(Line(x=tableRows['time'], y=tableRows['m3']))

支持多种时间格式,包括numpy的datetime64、Python的datetime对象等:

# 使用datetime64
dates = [np.datetime64('2015-02-01'), np.datetime64('2015-02-02')]
plot = TimePlot()
plot.add(Line(x=dates, y=[7.5, 7.9]))

# 使用Python datetime
dates = [datetime.date(2015, 2, 1), datetime.date(2015, 2, 2)]
plot = TimePlot()
plot.add(Line(x=dates, y=[7.5, 7.9]))

图表堆叠

可以将多个图表元素堆叠显示:

y1 = [1,5,3,2,3]
y2 = [7,2,4,1,3]
p = Plot(title='堆叠图表示例')
a1 = Area(y=y1, displayName='系列1')
a2 = Area(y=y2, displayName='系列2')
stacker = XYStacker()
p.add(stacker.stack([a1, a2]))

总结

BeakerX的Python图表API提供了丰富的可视化功能,从基础的线条、柱状图到复杂的时间序列图表和堆叠图表,都能轻松实现。其API设计直观,与Python生态无缝集成,特别适合数据分析师和研究人员使用。通过本文介绍的各种示例,读者可以快速掌握这一强大工具的核心功能。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢月连Jed

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值