深入理解基于树的方法(CART)——ESL-CN项目解析
引言
基于树的方法(Tree-based Methods)是机器学习中一类强大且直观的算法,它将特征空间递归地划分为矩形区域,并在每个区域内拟合简单模型(如常数)。本文将深入探讨分类与回归树(CART)算法,这是最著名的基于树的方法之一。
基本概念与原理
树模型的核心思想
基于树的方法通过一系列"是/否"问题将特征空间划分为不重叠的区域(矩形),每个区域对应一个简单的预测模型。这种划分可以用二叉树表示,其中:
- 每个内部节点代表一个特征上的分割条件
- 每个叶节点代表一个预测值
- 从根到叶的路径对应一系列决策规则
回归树构建过程
-
选择分割变量和分割点:对于每个变量j和分割点s,将空间分为两个区域:
R1(j,s) = {X|Xj ≤ s} R2(j,s) = {X|Xj > s}
-
计算最优分割:寻找使平方误差最小的(j,s)组合:
min[j,s] [min_c1 Σ(yi-c1)² + min_c2 Σ(yi-c2)²]
-
递归分割:对每个新区域重复上述过程,直到满足停止条件
分类树构建过程
分类树的构建与回归树类似,但使用不同的纯度衡量指标:
- 误分类误差:1 - max(pmk)
- 基尼指数:Σk≠k' pmk pmk'
- 交叉熵:-Σ pmk log(pmk)
其中pmk是节点m中类别k的比例。
关键技术与优化
成本复杂度剪枝
为了避免过拟合,CART采用成本复杂度剪枝:
-
先构建大树T0
-
定义子树T⊂T0的成本复杂度准则:
Cα(T) = Σ NmQm(T) + α|T|
其中α控制树复杂度惩罚
-
对每个α,找到最小化Cα(T)的子树Tα
-
通过交叉验证选择最优α
处理特殊数据情况
-
类别型变量:
- 对q个类别,有2^(q-1)-1种可能划分
- 优化方法:按类别1比例排序后视为有序变量处理
-
缺失值处理:
- 为缺失值创建新类别
- 使用代理变量(次优分割变量)
-
不平衡损失:
- 通过损失矩阵L调整不同误分类的代价
- 修改节点纯度计算方式
树模型的优缺点分析
优势
- 解释性强:决策路径清晰直观
- 处理混合类型数据:自然处理数值和类别特征
- 无需特征缩放:对单调变换不变
- 自动特征选择:分割过程隐含特征重要性
局限性
- 不稳定性:数据微小变化可能导致完全不同的树结构
- 缺乏平滑性:预测表面呈阶梯状
- 难以捕捉加性结构:对变量交互作用建模能力有限
- 贪婪算法:可能错过全局最优分割
实际应用案例:垃圾邮件分类
在垃圾邮件分类问题中:
-
使用偏差构建树,误分类率剪枝
-
17个节点的树测试误差约9.3%
-
关键特征包括:
- 特殊字符$的比例
- 词语"hp"出现频率
- 大写字母平均长度(CAPAVE)
-
性能评估:
- 敏感度86.3%
- 特异度93.4%
- ROC曲线下面积0.95
改进与变体
- Bagging:通过平均多棵树降低方差
- 随机森林:引入随机特征选择进一步改进
- 梯度提升树:序列化构建树,逐步改进预测
- MARS:引入线性组合分割,改善平滑性
总结
CART提供了一种直观有效的预测建模方法,特别适合解释性要求高的场景。虽然存在一些局限性,但通过剪枝、集成等方法可以显著提升性能。理解其工作原理和适用场景有助于在实际问题中合理应用和调优。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考