BasicSR项目数据集准备全指南
前言
在计算机视觉领域,高质量的数据集是模型训练的基础。BasicSR作为一个功能强大的图像和视频超分辨率框架,对数据集的准备有着规范化的要求。本文将详细介绍BasicSR支持的各种数据集格式、常见超分辨率数据集的准备方法,以及数据处理的最佳实践。
数据集存储格式
BasicSR支持三种主要的数据存储格式,各有其适用场景和优势:
1. 直接硬盘存储
最基础的存储方式,直接将图像/视频帧以文件形式存储在硬盘上。
特点:
- 实现简单,无需额外处理
- 适合小规模数据集或测试阶段
- 读取速度相对较慢
2. LMDB格式
LMDB(Lightning Memory-Mapped Database)是一种内存映射型数据库,能显著加速训练时的IO和解压缩速度。
优势:
- 极快的读取速度
- 减少小文件IO开销
- 支持事务操作
实现细节: BasicSR对标准LMDB进行了扩展,增加了meta_info.txt
文件记录额外信息,包含:
- 图像名称(带后缀)
- 图像尺寸(宽、高、通道数)
- PNG压缩级别(0-9)
使用建议:
- 训练阶段推荐使用
- 测试阶段通常不需要
- 确保机器有足够内存缓存整个数据集
3. Memcached
分布式内存缓存系统,适合集群环境。
特点:
- 需要集群支持
- 配置复杂但扩展性好
- 适合大规模分布式训练
数据预取机制
BasicSR提供了数据预取功能来进一步加速训练:
- CUDA预取:利用GPU显存预取数据,需要设置
pin_memory=True
- CPU预取:在CPU端预取数据
- 无预取:默认模式,适合已使用LMDB或IO不是瓶颈的情况
图像超分辨率数据集准备
DIV2K数据集
DIV2K是超分辨率领域最常用的基准数据集之一。
准备步骤:
- 下载原始数据:从官网获取2K分辨率图像
- 裁剪子图像:将大图裁剪为480x480的子图
- 使用
extract_subimages.py
脚本 - 注意与训练patch大小的区别
- 使用
- 生成LMDB(可选):使用
create_lmdb.py
脚本 - 测试数据加载:通过
test_paired_image_dataset.py
验证
技术细节:
- MATLAB双三次下采样核是常用假设
- 真实场景可能存在差异,催生了"盲恢复"研究方向
常见图像SR数据集
BasicSR支持多种经典超分辨率数据集:
| 类别 | 数据集 | 特点 | |------|--------|------| | 经典训练集 | T91, BSDS200, General100 | 小规模训练数据 | | 经典测试集 | Set5, Set14, BSDS100 | 基准测试集 | | 2K分辨率 | DIV2K, Flickr2K, DF2K | 高分辨率训练 | | 户外场景 | OST | 丰富纹理 | | 特殊场景 | manga109, historical | 特定领域测试 |
视频超分辨率数据集准备
REDS数据集
关键点:
- 官方训练集:240个片段(000-239)
- 验证集重编号:240-269
- 两种验证划分方式:
- 官方划分:30个片段
- REDS4划分:从训练集中选4个片段
准备步骤:
- 下载并重组数据集
- 可选生成LMDB
- 测试数据加载器
Vimeo90K数据集
特点:
- 包含视频七联帧
- 需要生成低分辨率版本
- 测试集使用MATLAB双三次下采样
StyleGAN2数据准备
FFHQ数据集
处理流程:
- 下载TFRecords格式原始数据
- 提取为图像或LMDB
- 按分辨率分开存储
最佳实践建议
- 符号链接:使用
ln -s
创建数据集符号链接到datasets
目录 - LMDB优化:
- 首次使用前执行
cat data.mdb > /dev/null
预缓存 - 监控系统缓存使用情况
- 首次使用前执行
- 格式选择:
- 训练:优先LMDB
- 测试:直接文件读取
- 数据验证:务必测试数据加载器确保无误
通过本文的指导,您应该能够为BasicSR项目准备各种类型的超分辨率数据集。合理的数据准备不仅能提升训练效率,也是获得良好模型性能的基础。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考