BasicSR项目数据集准备全指南

BasicSR项目数据集准备全指南

BasicSR Open Source Image and Video Restoration Toolbox for Super-resolution, Denoise, Deblurring, etc. Currently, it includes EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, BasicVSR, SwinIR, ECBSR, etc. Also support StyleGAN2, DFDNet. BasicSR 项目地址: https://gitcode.com/gh_mirrors/ba/BasicSR

前言

在计算机视觉领域,高质量的数据集是模型训练的基础。BasicSR作为一个功能强大的图像和视频超分辨率框架,对数据集的准备有着规范化的要求。本文将详细介绍BasicSR支持的各种数据集格式、常见超分辨率数据集的准备方法,以及数据处理的最佳实践。

数据集存储格式

BasicSR支持三种主要的数据存储格式,各有其适用场景和优势:

1. 直接硬盘存储

最基础的存储方式,直接将图像/视频帧以文件形式存储在硬盘上。

特点

  • 实现简单,无需额外处理
  • 适合小规模数据集或测试阶段
  • 读取速度相对较慢

2. LMDB格式

LMDB(Lightning Memory-Mapped Database)是一种内存映射型数据库,能显著加速训练时的IO和解压缩速度。

优势

  • 极快的读取速度
  • 减少小文件IO开销
  • 支持事务操作

实现细节: BasicSR对标准LMDB进行了扩展,增加了meta_info.txt文件记录额外信息,包含:

  • 图像名称(带后缀)
  • 图像尺寸(宽、高、通道数)
  • PNG压缩级别(0-9)

使用建议

  • 训练阶段推荐使用
  • 测试阶段通常不需要
  • 确保机器有足够内存缓存整个数据集

3. Memcached

分布式内存缓存系统,适合集群环境。

特点

  • 需要集群支持
  • 配置复杂但扩展性好
  • 适合大规模分布式训练

数据预取机制

BasicSR提供了数据预取功能来进一步加速训练:

  1. CUDA预取:利用GPU显存预取数据,需要设置pin_memory=True
  2. CPU预取:在CPU端预取数据
  3. 无预取:默认模式,适合已使用LMDB或IO不是瓶颈的情况

图像超分辨率数据集准备

DIV2K数据集

DIV2K是超分辨率领域最常用的基准数据集之一。

准备步骤

  1. 下载原始数据:从官网获取2K分辨率图像
  2. 裁剪子图像:将大图裁剪为480x480的子图
    • 使用extract_subimages.py脚本
    • 注意与训练patch大小的区别
  3. 生成LMDB(可选):使用create_lmdb.py脚本
  4. 测试数据加载:通过test_paired_image_dataset.py验证

技术细节

  • MATLAB双三次下采样核是常用假设
  • 真实场景可能存在差异,催生了"盲恢复"研究方向

常见图像SR数据集

BasicSR支持多种经典超分辨率数据集:

| 类别 | 数据集 | 特点 | |------|--------|------| | 经典训练集 | T91, BSDS200, General100 | 小规模训练数据 | | 经典测试集 | Set5, Set14, BSDS100 | 基准测试集 | | 2K分辨率 | DIV2K, Flickr2K, DF2K | 高分辨率训练 | | 户外场景 | OST | 丰富纹理 | | 特殊场景 | manga109, historical | 特定领域测试 |

视频超分辨率数据集准备

REDS数据集

关键点

  • 官方训练集:240个片段(000-239)
  • 验证集重编号:240-269
  • 两种验证划分方式:
    • 官方划分:30个片段
    • REDS4划分:从训练集中选4个片段

准备步骤

  1. 下载并重组数据集
  2. 可选生成LMDB
  3. 测试数据加载器

Vimeo90K数据集

特点

  • 包含视频七联帧
  • 需要生成低分辨率版本
  • 测试集使用MATLAB双三次下采样

StyleGAN2数据准备

FFHQ数据集

处理流程

  1. 下载TFRecords格式原始数据
  2. 提取为图像或LMDB
  3. 按分辨率分开存储

最佳实践建议

  1. 符号链接:使用ln -s创建数据集符号链接到datasets目录
  2. LMDB优化
    • 首次使用前执行cat data.mdb > /dev/null预缓存
    • 监控系统缓存使用情况
  3. 格式选择
    • 训练:优先LMDB
    • 测试:直接文件读取
  4. 数据验证:务必测试数据加载器确保无误

通过本文的指导,您应该能够为BasicSR项目准备各种类型的超分辨率数据集。合理的数据准备不仅能提升训练效率,也是获得良好模型性能的基础。

BasicSR Open Source Image and Video Restoration Toolbox for Super-resolution, Denoise, Deblurring, etc. Currently, it includes EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, BasicVSR, SwinIR, ECBSR, etc. Also support StyleGAN2, DFDNet. BasicSR 项目地址: https://gitcode.com/gh_mirrors/ba/BasicSR

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬忆慈Loveable

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值