使用JavaScript SDK v3操作Amazon Bedrock Runtime的完整指南

使用JavaScript SDK v3操作Amazon Bedrock Runtime的完整指南

概述

Amazon Bedrock Runtime是一项完全托管的服务,它简化了使用来自第三方提供商和亚马逊的基础模型的过程。本文将详细介绍如何使用AWS SDK for JavaScript (v3)与Amazon Bedrock Runtime进行交互。

核心概念解析

什么是Amazon Bedrock Runtime?

Bedrock Runtime是AWS提供的一项托管服务,它允许开发者轻松访问和使用各种基础模型(Foundation Models)。这些模型包括:

  • 文本生成模型(如Amazon Titan Text、Anthropic Claude等)
  • 图像生成模型(如Amazon Nova Canvas)
  • 多模态模型

为什么使用JavaScript SDK v3?

AWS SDK for JavaScript v3提供了现代化的API设计,具有以下优势:

  1. 模块化架构,可按需导入
  2. 改进的类型支持
  3. 更好的错误处理机制
  4. 更高效的性能

准备工作

环境要求

  1. Node.js环境(建议使用最新LTS版本)
  2. AWS账户配置
  3. 必要的IAM权限

重要注意事项

  • 使用这些代码可能会产生AWS费用
  • 建议遵循最小权限原则
  • 使用模型前必须申请访问权限

代码示例详解

基础示例

Hello Bedrock示例
// 最简单的Bedrock调用示例
import { BedrockRuntimeClient, InvokeModelCommand } from "@aws-sdk/client-bedrock-runtime";

const client = new BedrockRuntimeClient({ region: "us-west-2" });

async function invokeModel() {
  const input = {
    modelId: "amazon.titan-text-express-v1",
    contentType: "application/json",
    accept: "*/*",
    body: JSON.stringify({
      inputText: "请用中文解释什么是Amazon Bedrock"
    })
  };
  
  const command = new InvokeModelCommand(input);
  const response = await client.send(command);
  
  const result = JSON.parse(Buffer.from(response.body).toString());
  console.log(result.results[0].outputText);
}

invokeModel();

进阶场景

多模型调用场景

这个场景展示了如何同时调用多个不同的基础模型:

// 多模型调用示例
import { BedrockRuntimeClient } from "@aws-sdk/client-bedrock-runtime";

const models = [
  "amazon.titan-text-express-v1",
  "anthropic.claude-v2",
  "meta.llama2-13b-chat-v1"
];

async function compareModelResponses(prompt) {
  const client = new BedrockRuntimeClient({ region: "us-west-2" });
  
  const responses = await Promise.all(models.map(async modelId => {
    const input = {
      modelId,
      body: JSON.stringify({ prompt }),
      contentType: "application/json"
    };
    
    const response = await client.send(new InvokeModelCommand(input));
    return {
      modelId,
      response: JSON.parse(Buffer.from(response.body).toString())
    };
  }));
  
  responses.forEach(({modelId, response}) => {
    console.log(`=== ${modelId} ===`);
    console.log(response);
  });
}
工具使用场景

这个高级场景展示了如何将AI模型与外部API(如天气API)集成:

// 工具使用示例
import { BedrockRuntimeClient, ConverseCommand } from "@aws-sdk/client-bedrock-runtime";

async function getWeatherWithAI(location) {
  const client = new BedrockRuntimeClient({ region: "us-west-2" });
  
  const input = {
    modelId: "anthropic.claude-3-sonnet-20240229-v1:0",
    messages: [{
      role: "user",
      content: `获取${location}的当前天气`
    }],
    toolConfig: {
      tools: [{
        name: "get_current_weather",
        description: "获取指定位置的当前天气",
        inputSchema: {
          type: "object",
          properties: {
            location: { type: "string" }
          },
          required: ["location"]
        }
      }]
    }
  };
  
  const command = new ConverseCommand(input);
  const response = await client.send(command);
  
  // 处理工具调用请求
  if (response.stopReason === "tool_use") {
    const toolCall = response.output.toolUses[0];
    if (toolCall.name === "get_current_weather") {
      // 这里实际调用天气API
      const weatherData = await fetchWeather(toolCall.input.location);
      
      // 将结果返回给模型
      const followUp = new ConverseCommand({
        modelId: input.modelId,
        messages: [
          ...input.messages,
          {
            role: "assistant",
            content: response.output.message
          },
          {
            role: "user",
            content: JSON.stringify(weatherData)
          }
        ]
      });
      
      const finalResponse = await client.send(followUp);
      return finalResponse.output.message;
    }
  }
  
  return response.output.message;
}

模型特定实现

Amazon Titan Text模型

// Titan Text模型调用示例
async function generateTextWithTitan(prompt) {
  const client = new BedrockRuntimeClient({ region: "us-west-2" });
  
  const input = {
    modelId: "amazon.titan-text-express-v1",
    body: JSON.stringify({
      inputText: prompt,
      textGenerationConfig: {
        maxTokenCount: 4096,
        stopSequences: [],
        temperature: 0.7,
        topP: 0.9
      }
    }),
    contentType: "application/json"
  };
  
  const response = await client.send(new InvokeModelCommand(input));
  return JSON.parse(Buffer.from(response.body).toString());
}

Anthropic Claude模型

// Claude 3模型流式响应示例
async function streamWithClaude(prompt) {
  const client = new BedrockRuntimeClient({ region: "us-west-2" });
  
  const input = {
    modelId: "anthropic.claude-3-sonnet-20240229-v1:0",
    messages: [{ role: "user", content: prompt }],
    stream: true
  };
  
  const command = new ConverseCommand(input);
  const response = await client.send(command);
  
  for await (const streamEvent of response.stream) {
    if (streamEvent.contentBlockDelta) {
      process.stdout.write(streamEvent.contentBlockDelta.delta.text);
    }
  }
}

最佳实践

  1. 错误处理:始终处理可能的API错误
  2. 性能优化:对于长时间运行的操作,考虑使用流式响应
  3. 安全考虑
    • 不要硬编码凭证
    • 使用IAM角色最小权限原则
  4. 成本控制
    • 监控API调用次数
    • 设置预算警报

常见问题解答

Q: 为什么我收到"Model not accessible"错误? A: 使用模型前必须先在AWS控制台中申请访问权限。

Q: 如何选择合适的模型? A: 根据任务类型选择:

  • 通用文本:Claude或Titan
  • 编程相关:Claude或Llama
  • 多语言支持:Llama或Mistral

Q: 流式响应和普通响应有什么区别? A: 流式响应可以逐步接收输出,适合长文本生成场景,能提供更好的用户体验。

总结

本文详细介绍了如何使用JavaScript SDK v3与Amazon Bedrock Runtime交互,从基础调用到高级场景实现。通过合理利用Bedrock提供的各种基础模型,开发者可以快速构建强大的AI应用,而无需关心底层基础设施管理。

建议从简单的文本生成开始,逐步尝试更复杂的工具集成场景,以充分利用Bedrock Runtime的强大功能。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞿凌骊Natalie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值