使用magentic实现检索增强生成(RAG)技术实践

使用magentic实现检索增强生成(RAG)技术实践

检索增强生成(Retrieval-Augmented Generation, RAG)是当前大语言模型应用中的一项重要技术,它能够有效解决模型知识更新滞后的问题。本文将基于magentic项目,详细介绍如何利用RAG技术构建一个智能代码仓库推荐系统。

什么是检索增强生成(RAG)

RAG技术通过将外部知识检索与生成模型相结合,为大语言模型提供实时、准确的外部信息参考。其核心思想是:

  1. 当用户提出查询时,系统首先从外部知识库中检索相关信息
  2. 将检索到的相关内容与用户查询一起输入给生成模型
  3. 生成模型基于检索内容和自身知识生成最终回答

这种架构特别适合需要访问最新信息或专有信息的场景,能够显著减少模型幻觉现象。

环境准备

首先需要安装必要的Python包:

pip install magentic
pip install ghapi

然后设置使用GPT-3.5-turbo模型:

%env MAGENTIC_OPENAI_MODEL=gpt-3.5-turbo

基础推荐功能实现

我们先创建一个基本的推荐函数,不使用任何外部信息:

from magentic import prompt

@prompt(
    """What are the latest github repos I should use related to {topic}?
    Recommend three in particular that I should check out and why.
    Provide a link to each, and a note on whether they are actively maintained.
    """
)
def recommmend_github_repos(topic: str) -> str: ...

output = recommmend_github_repos("LLMs")

这种基础实现存在明显问题:

  1. 无法获取模型知识截止日期后的新仓库
  2. 有时会产生错误信息(幻觉)
  3. 推荐内容可能过时

集成代码仓库搜索API

为了解决上述问题,我们需要集成代码仓库搜索功能:

from ghapi.all import GhApi
from pydantic import BaseModel

class GithubRepo(BaseModel):
    full_name: str
    description: str
    html_url: str
    stargazers_count: int
    pushed_at: str

def search_github_repos(query: str, num_results: int = 10):
    github = GhApi(authenticate=False)
    results = github.search.repos(query, per_page=num_results)
    return [GithubRepo.model_validate(item) for item in results["items"]]

这个搜索函数能够:

  1. 根据关键词查询相关代码仓库
  2. 返回仓库名称、描述、URL、星标数和最后更新时间
  3. 使用Pydantic进行数据验证

实现RAG推荐系统

现在我们将搜索功能与生成模型结合,创建真正的RAG系统:

@prompt(
    """What are the latest github repos I should use related to {topic}?
    Recommend three in particular that I should check out and why.
    Provide a link to each, and a note on whether they are actively maintained.

    Here are the latest search results for this topic on GitHub:
    {search_results}
    """,
)
def recommmend_github_repos_using_search_results(
    topic: str, search_results: list[GithubRepo]
) -> str: ...

def recommmend_github_repos(topic: str) -> str:
    search_results = search_github_repos(topic, num_results=10)
    return recommmend_github_repos_using_search_results(topic, search_results)

这个实现的关键点:

  1. 首先执行代码仓库搜索获取最新结果
  2. 将搜索结果作为上下文提供给生成模型
  3. 模型基于实时数据生成推荐

系统优势与特点

  1. 实时性:推荐基于最新搜索数据,而非模型训练时的知识
  2. 准确性:减少模型幻觉,确保推荐仓库真实存在
  3. 可解释性:提供星标数、最后更新时间等客观指标
  4. 灵活性:可轻松调整搜索参数和推荐标准

实际应用建议

  1. 认证访问:对于私有仓库或更高频率访问,建议添加GitHub认证
  2. 结果过滤:可根据星标数、更新时间等对结果进行预过滤
  3. 缓存机制:对频繁查询的主题可添加缓存提高响应速度
  4. 多维度评估:可扩展评估指标,如提交频率、issue响应时间等

总结

通过magentic实现RAG技术,我们构建了一个智能代码仓库推荐系统,有效解决了大语言模型知识滞后的问题。这种架构不仅适用于代码仓库推荐,也可应用于各种需要结合实时数据的智能问答场景。RAG技术正在成为增强大语言模型能力的重要范式,值得开发者深入研究和应用。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

常煦梦Vanessa

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值