Anthropic Cookbook项目解析:Orchestrator-Workers工作流模式详解
什么是Orchestrator-Workers工作流
Orchestrator-Workers(协调器-工作者)工作流是一种基于大型语言模型(LLM)的分布式任务处理架构。在这个模式中,一个中央协调器(Orchestrator)负责接收主任务,分析任务需求,动态分解为多个子任务,然后将这些子任务分配给专门的工作者(Worker)进行处理,最后汇总所有工作者的结果。
这种架构特别适合处理那些无法预先确定子任务结构的复杂问题,它展现了LLM在任务分解和协调方面的独特能力。
核心优势与应用场景
主要优势
- 动态任务分解:协调器能够根据具体输入动态决定需要哪些子任务,而不是依赖预先定义的固定流程
- 并行处理能力:多个工作者可以同时处理不同的子任务,显著提高整体效率
- 专业化分工:不同类型的工作者可以专注于特定类型的子任务,提高处理质量
典型应用场景
- 内容生成(如不同风格的产品描述)
- 复杂问题分析(需要多角度评估的问题)
- 数据综合处理(从多个来源收集和处理信息)
- 创意工作(如多角度营销文案创作)
技术实现解析
核心组件
- 协调器(Orchestrator):负责任务分解和结果整合
- 工作者(Worker):专门处理特定类型的子任务
- 任务解析器:将协调器的输出解析为可执行的子任务
关键代码结构
class FlexibleOrchestrator:
def __init__(self, orchestrator_prompt: str, worker_prompt: str):
self.orchestrator_prompt = orchestrator_prompt
self.worker_prompt = worker_prompt
def process(self, task: str, context: Optional[Dict] = None) -> Dict:
# 1. 获取协调器响应
orchestrator_input = self._format_prompt(...)
orchestrator_response = llm_call(orchestrator_input)
# 2. 解析协调器响应
analysis = extract_xml(orchestrator_response, "analysis")
tasks_xml = extract_xml(orchestrator_response, "tasks")
tasks = parse_tasks(tasks_xml)
# 3. 并行处理每个子任务
worker_results = []
for task_info in tasks:
worker_input = self._format_prompt(...)
worker_response = llm_call(worker_input)
result = extract_xml(worker_response, "response")
worker_results.append(...)
return {
"analysis": analysis,
"worker_results": worker_results,
}
XML解析机制
系统使用XML格式在组件间传递结构化数据,包括:
<analysis>
:协调器对任务的分析<tasks>
:分解后的子任务列表<response>
:工作者的处理结果
实战案例:环保水壶营销文案生成
任务分解示例
当要求"为新型环保水壶撰写产品描述"时,协调器可能分解为:
- 正式技术规格版:强调材料组成、环境认证、量化环保影响
- 对话式生活版:关注用户体验、生活方式和情感连接
- 混合版:结合技术规格和情感诉求
输出示例对比
正式版:
EcoVessel Pro系列:采用100%消费后回收不锈钢制造,通过全球回收标准(GRS)认证
技术规格:
• 容量:750ml
• 材料:18/8食品级回收不锈钢(304级)
• 保温性能:24小时保冷/12小时保温
混合版:
AquaVerde Elite - 您每日补水习惯成为地球未来的有力声明
想象一下,每天知道您的每一口都能帮助减少167个一次性塑料瓶进入海洋...
技术规格:
• 容量:24oz/710ml
• 材料:90%回收18/8不锈钢
• 终身保修
最佳实践与调优建议
-
提示词设计:
- 为协调器提供清晰的分解指导
- 为工作者提供具体的风格和内容要求
- 使用XML等结构化格式确保一致性
-
性能优化:
- 限制子任务数量以避免过度分解
- 为不同类型的工作者设计专用提示词
- 实现真正的并行处理以提高效率
-
错误处理:
- 验证XML格式完整性
- 处理缺失字段的默认值
- 记录中间结果以便调试
扩展思考
这种模式展示了LLM在复杂工作流管理中的潜力。未来可能的扩展方向包括:
- 动态工作者选择:根据子任务特点选择最适合的工作者模型
- 迭代优化:基于初步结果进行二次分解和优化
- 多模态处理:协调器可以分配文本、图像等不同类型的工作任务
Orchestrator-Workers模式为构建更复杂、更灵活的AI应用提供了基础框架,特别适合那些需求多变、难以预先定义完整流程的应用场景。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考