SigNoz插件系统:扩展功能与自定义集成开发

SigNoz插件系统:扩展功能与自定义集成开发

【免费下载链接】signoz SigNoz/signoz: SigNoz 是一款开源的可观测性平台,专为微服务架构设计,提供分布式追踪、日志管理和度量指标等功能,以帮助开发者监控和调试应用程序。 【免费下载链接】signoz 项目地址: https://gitcode.com/GitHub_Trending/si/signoz

概述

SigNoz作为一款开源的可观测性平台,其强大的插件系统允许开发者轻松扩展平台功能,实现与各种第三方系统的无缝集成。本文将深入探讨SigNoz插件系统的架构设计、核心组件以及如何开发自定义集成。

插件系统架构

核心组件

SigNoz插件系统基于模块化架构设计,主要包含以下核心组件:

mermaid

集成生命周期管理

集成插件的完整生命周期包括发现、安装、配置和监控四个阶段:

mermaid

集成插件开发指南

基本结构

每个集成插件都需要遵循特定的目录结构和配置文件格式:

integrations/
├── {integration_id}/
│   ├── integration.json
│   ├── icon.svg
│   ├── overview.md
│   ├── config/
│   │   ├── prerequisites.md
│   │   └── collect-metrics.md
│   ├── assets/
│   │   └── dashboards/
│   │       └── overview.json
│   └── data-collected.json

集成配置文件详解

integration.json 是集成插件的核心配置文件,定义了集成的基本信息和功能:

{
  "id": "mongo",
  "title": "MongoDB",
  "description": "Monitor MongoDB using logs and metrics",
  "author": {
    "name": "Your Name",
    "email": "your.email@example.com",
    "homepage": "https://yourwebsite.com"
  },
  "icon": "file://icon.svg",
  "categories": ["Database"],
  "overview": "file://overview.md",
  "configuration": [
    {
      "title": "Prerequisites",
      "instructions": "file://config/prerequisites.md"
    }
  ],
  "assets": {
    "logs": {
      "pipelines": []
    },
    "dashboards": [
      "file://assets/dashboards/overview.json"
    ],
    "alerts": []
  },
  "connection_tests": {
    "logs": {
      "attribute_key": "source",
      "attribute_value": "mongodb"
    }
  },
  "data_collected": {
    "logs": [
      {
        "name": "Timestamp",
        "path": "timestamp",
        "type": "timestamp"
      }
    ],
    "metrics": [
      {
        "description": "Database connection count",
        "unit": "number",
        "type": "Sum",
        "name": "mongodb_connection_count"
      }
    ]
  }
}

数据收集配置

集成插件需要明确定义收集的数据类型和结构:

数据类型配置项描述示例
日志数据data_collected.logs定义日志属性和路径{"name": "Severity", "path": "severity_text", "type": "string"}
指标数据data_collected.metrics定义监控指标{"name": "connection_count", "type": "Sum", "unit": "number"}
仪表板assets.dashboards预定义监控面板Grafana兼容的JSON配置
告警规则assets.alerts预配置告警规则Prometheus告警规则格式

连接测试配置

集成插件需要提供连接验证机制,确保数据正常采集:

{
  "connection_tests": {
    "logs": {
      "attribute_key": "service.name",
      "attribute_value": "your-service"
    },
    "metrics": ["your_metric_name", "another_metric_name"]
  }
}

开发实战:创建自定义集成

步骤1:创建集成目录结构

mkdir -p custom-integration/{config,assets/dashboards}
touch custom-integration/integration.json
touch custom-integration/overview.md
touch custom-integration/config/prerequisites.md

步骤2:编写集成配置

创建完整的 integration.json 配置文件:

{
  "id": "custom-app",
  "title": "Custom Application",
  "description": "Monitor your custom application with SigNoz",
  "author": {
    "name": "Your Team",
    "email": "dev@yourcompany.com"
  },
  "icon": "file://icon.svg",
  "categories": ["Application"],
  "overview": "file://overview.md",
  "configuration": [
    {
      "title": "Prerequisites",
      "instructions": "file://config/prerequisites.md"
    },
    {
      "title": "Instrumentation",
      "instructions": "file://config/instrumentation.md"
    }
  ],
  "assets": {
    "logs": {
      "pipelines": [
        {
          "alias": "custom-app-logs",
          "name": "Custom App Log Processing",
          "description": "Process logs from custom application",
          "enabled": true,
          "order_id": 100,
          "filter": "resource.attributes.service.name == \"custom-app\"",
          "config": {
            "processors": [
              {
                "type": "attributes",
                "actions": [
                  {
                    "key": "log_level",
                    "action": "extract",
                    "pattern": "^.*\\[(DEBUG|INFO|WARN|ERROR)\\].*$",
                    "from": "body"
                  }
                ]
              }
            ]
          }
        }
      ]
    },
    "dashboards": [
      "file://assets/dashboards/overview.json"
    ],
    "alerts": [
      {
        "alert": "HighErrorRate",
        "expr": "rate(custom_app_errors_total[5m]) > 0.1",
        "for": "10m",
        "labels": {
          "severity": "critical"
        },
        "annotations": {
          "summary": "High error rate detected in custom application"
        }
      }
    ]
  },
  "connection_tests": {
    "logs": {
      "attribute_key": "service.name",
      "attribute_value": "custom-app"
    },
    "metrics": [
      "custom_app_requests_total",
      "custom_app_errors_total"
    ]
  },
  "data_collected": {
    "logs": [
      {
        "name": "Timestamp",
        "path": "timestamp",
        "type": "timestamp"
      },
      {
        "name": "Log Level",
        "path": "attributes.log_level",
        "type": "string"
      },
      {
        "name": "Service Name",
        "path": "resource.attributes.service.name",
        "type": "string"
      }
    ],
    "metrics": [
      {
        "name": "custom_app_requests_total",
        "type": "Counter",
        "unit": "number",
        "description": "Total number of requests processed"
      },
      {
        "name": "custom_app_errors_total",
        "type": "Counter",
        "unit": "number",
        "description": "Total number of errors encountered"
      },
      {
        "name": "custom_app_request_duration",
        "type": "Histogram",
        "unit": "milliseconds",
        "description": "Request duration distribution"
      }
    ]
  }
}

步骤3:创建文档文件

编写 overview.md 文件:

# Custom Application Monitoring

This integration provides comprehensive monitoring for your custom application, including:

- **Request Metrics**: Track request volume, error rates, and latency
- **Log Analysis**: Structured logging with automatic level extraction
- **Performance Dashboards**: Pre-built dashboards for real-time insights
- **Alerting**: Proactive alerting for abnormal conditions

## Key Features

- Real-time request monitoring
- Error rate tracking and alerting
- Performance bottleneck identification
- Custom log processing pipelines

步骤4:创建配置指南

编写 config/prerequisites.md

# Prerequisites

Before installing this integration, ensure you have:

## Application Requirements

- Application instrumented with OpenTelemetry
- Logs exported in OTLP format
- Metrics exported with Prometheus compatibility

## SigNoz Requirements

- SigNoz version 0.25.0 or later
- OTLP receiver enabled
- Sufficient storage capacity for metrics and logs

## Network Configuration

- Port 4317 open for OTLP/gRPC traffic
- Port 4318 open for OTLP/HTTP traffic
- Proper firewall rules for data ingestion

高级功能开发

自定义数据处理管道

集成插件可以定义复杂的数据处理逻辑:

{
  "assets": {
    "logs": {
      "pipelines": [
        {
          "alias": "custom-processing",
          "name": "Custom Log Processing",
          "filter": "resource.attributes.service.name == \"custom-app\"",
          "config": {
            "processors": [
              {
                "type": "attributes",
                "actions": [
                  {
                    "key": "user_id",
                    "action": "extract",
                    "pattern": "user_id=([a-f0-9-]+)",
                    "from": "body"
                  },
                  {
                    "key": "session_id",
                    "action": "extract",
                    "pattern": "session=([a-f0-9-]+)",
                    "from": "body"
                  }
                ]
              },
              {
                "type": "transform",
                "log_statements": [
                  {
                    "context": "log",
                    "statements": [
                      "set(attributes[\"processed\"] = true)",
                      "set(attributes[\"processing_timestamp\"] = now())"
                    ]
                  }
                ]
              }
            ]
          }
        }
      ]
    }
  }
}

多仪表板支持

集成可以包含多个专用仪表板:

{
  "assets": {
    "dashboards": [
      {
        "id": "overview",
        "title": "Custom App Overview",
        "definition": "file://assets/dashboards/overview.json"
      },
      {
        "id": "performance",
        "title": "Performance Metrics",
        "definition": "file://assets/dashboards/performance.json"
      },
      {
        "id": "errors",
        "title": "Error Analysis",
        "definition": "file://assets/dashboards/errors.json"
      }
    ]
  }
}

测试与验证

连接状态测试

集成插件应该提供完整的连接测试配置:

{
  "connection_tests": {
    "logs": {
      "attribute_key": "service.name",
      "attribute_value": "custom-app"
    },
    "metrics": [
      "custom_app_requests_total",
      "custom_app_request_duration_bucket",
      "custom_app_errors_total"
    ]
  }
}

数据质量验证

确保收集的数据符合预期格式:

数据维度验证方法预期结果
指标完整性检查所有定义指标是否存在所有指标都应被收集
日志结构验证日志属性提取属性应正确解析
数据时效性检查数据时间戳数据不应有较大延迟
数据一致性验证关联数据关系相关数据应保持一致性

最佳实践

开发规范

  1. 命名约定

    • 使用小写字母和连字符命名集成ID
    • 指标名称使用蛇形命名法
    • 保持命名的一致性和描述性
  2. 文档完整性

    • 提供完整的配置指南
    • 包含故障排除章节
    • 提供示例配置和代码片段
  3. 性能考虑

    • 优化数据处理管道
    • 避免不必要的属性提取
    • 合理设置采样率

版本管理

mermaid

故障排除

常见问题解决

问题现象可能原因解决方案
集成安装失败配置格式错误验证JSON语法和必填字段
数据无法收集网络连接问题检查端口和防火墙设置
仪表板不显示数据格式不匹配验证指标名称和标签
告警不触发表达式错误检查PromQL语法

调试技巧

  1. 日志分析

    # 查看集成相关日志
    kubectl logs -l app=signoz-query-service | grep integration
    
  2. 数据验证

    # 检查指标是否存在
    curl -s "http://localhost:9090/api/v1/query?query=custom_app_requests_total"
    
  3. 连接测试

    # 测试数据接收
    curl -X POST http://localhost:4318/v1/logs -H "Content-Type: application/json" -d '{"logs": [...]}'
    

总结

SigNoz的插件系统提供了一个强大而灵活的框架,用于扩展平台功能和集成第三方系统。通过遵循本文介绍的开发规范和最佳实践,您可以创建高质量的自定义集成,为您的应用程序提供全面的可观测性支持。

记住成功的集成开发关键在于:

  • 清晰的文档和配置指南
  • 完整的数据收集定义
  • 有效的连接测试机制
  • 持续的性能优化和迭代

通过充分利用SigNoz插件系统的能力,您可以构建出真正满足业务需求的监控解决方案。

【免费下载链接】signoz SigNoz/signoz: SigNoz 是一款开源的可观测性平台,专为微服务架构设计,提供分布式追踪、日志管理和度量指标等功能,以帮助开发者监控和调试应用程序。 【免费下载链接】signoz 项目地址: https://gitcode.com/GitHub_Trending/si/signoz

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值