SigNoz插件系统:扩展功能与自定义集成开发
概述
SigNoz作为一款开源的可观测性平台,其强大的插件系统允许开发者轻松扩展平台功能,实现与各种第三方系统的无缝集成。本文将深入探讨SigNoz插件系统的架构设计、核心组件以及如何开发自定义集成。
插件系统架构
核心组件
SigNoz插件系统基于模块化架构设计,主要包含以下核心组件:
集成生命周期管理
集成插件的完整生命周期包括发现、安装、配置和监控四个阶段:
集成插件开发指南
基本结构
每个集成插件都需要遵循特定的目录结构和配置文件格式:
integrations/
├── {integration_id}/
│ ├── integration.json
│ ├── icon.svg
│ ├── overview.md
│ ├── config/
│ │ ├── prerequisites.md
│ │ └── collect-metrics.md
│ ├── assets/
│ │ └── dashboards/
│ │ └── overview.json
│ └── data-collected.json
集成配置文件详解
integration.json
是集成插件的核心配置文件,定义了集成的基本信息和功能:
{
"id": "mongo",
"title": "MongoDB",
"description": "Monitor MongoDB using logs and metrics",
"author": {
"name": "Your Name",
"email": "your.email@example.com",
"homepage": "https://yourwebsite.com"
},
"icon": "file://icon.svg",
"categories": ["Database"],
"overview": "file://overview.md",
"configuration": [
{
"title": "Prerequisites",
"instructions": "file://config/prerequisites.md"
}
],
"assets": {
"logs": {
"pipelines": []
},
"dashboards": [
"file://assets/dashboards/overview.json"
],
"alerts": []
},
"connection_tests": {
"logs": {
"attribute_key": "source",
"attribute_value": "mongodb"
}
},
"data_collected": {
"logs": [
{
"name": "Timestamp",
"path": "timestamp",
"type": "timestamp"
}
],
"metrics": [
{
"description": "Database connection count",
"unit": "number",
"type": "Sum",
"name": "mongodb_connection_count"
}
]
}
}
数据收集配置
集成插件需要明确定义收集的数据类型和结构:
数据类型 | 配置项 | 描述 | 示例 |
---|---|---|---|
日志数据 | data_collected.logs | 定义日志属性和路径 | {"name": "Severity", "path": "severity_text", "type": "string"} |
指标数据 | data_collected.metrics | 定义监控指标 | {"name": "connection_count", "type": "Sum", "unit": "number"} |
仪表板 | assets.dashboards | 预定义监控面板 | Grafana兼容的JSON配置 |
告警规则 | assets.alerts | 预配置告警规则 | Prometheus告警规则格式 |
连接测试配置
集成插件需要提供连接验证机制,确保数据正常采集:
{
"connection_tests": {
"logs": {
"attribute_key": "service.name",
"attribute_value": "your-service"
},
"metrics": ["your_metric_name", "another_metric_name"]
}
}
开发实战:创建自定义集成
步骤1:创建集成目录结构
mkdir -p custom-integration/{config,assets/dashboards}
touch custom-integration/integration.json
touch custom-integration/overview.md
touch custom-integration/config/prerequisites.md
步骤2:编写集成配置
创建完整的 integration.json
配置文件:
{
"id": "custom-app",
"title": "Custom Application",
"description": "Monitor your custom application with SigNoz",
"author": {
"name": "Your Team",
"email": "dev@yourcompany.com"
},
"icon": "file://icon.svg",
"categories": ["Application"],
"overview": "file://overview.md",
"configuration": [
{
"title": "Prerequisites",
"instructions": "file://config/prerequisites.md"
},
{
"title": "Instrumentation",
"instructions": "file://config/instrumentation.md"
}
],
"assets": {
"logs": {
"pipelines": [
{
"alias": "custom-app-logs",
"name": "Custom App Log Processing",
"description": "Process logs from custom application",
"enabled": true,
"order_id": 100,
"filter": "resource.attributes.service.name == \"custom-app\"",
"config": {
"processors": [
{
"type": "attributes",
"actions": [
{
"key": "log_level",
"action": "extract",
"pattern": "^.*\\[(DEBUG|INFO|WARN|ERROR)\\].*$",
"from": "body"
}
]
}
]
}
}
]
},
"dashboards": [
"file://assets/dashboards/overview.json"
],
"alerts": [
{
"alert": "HighErrorRate",
"expr": "rate(custom_app_errors_total[5m]) > 0.1",
"for": "10m",
"labels": {
"severity": "critical"
},
"annotations": {
"summary": "High error rate detected in custom application"
}
}
]
},
"connection_tests": {
"logs": {
"attribute_key": "service.name",
"attribute_value": "custom-app"
},
"metrics": [
"custom_app_requests_total",
"custom_app_errors_total"
]
},
"data_collected": {
"logs": [
{
"name": "Timestamp",
"path": "timestamp",
"type": "timestamp"
},
{
"name": "Log Level",
"path": "attributes.log_level",
"type": "string"
},
{
"name": "Service Name",
"path": "resource.attributes.service.name",
"type": "string"
}
],
"metrics": [
{
"name": "custom_app_requests_total",
"type": "Counter",
"unit": "number",
"description": "Total number of requests processed"
},
{
"name": "custom_app_errors_total",
"type": "Counter",
"unit": "number",
"description": "Total number of errors encountered"
},
{
"name": "custom_app_request_duration",
"type": "Histogram",
"unit": "milliseconds",
"description": "Request duration distribution"
}
]
}
}
步骤3:创建文档文件
编写 overview.md
文件:
# Custom Application Monitoring
This integration provides comprehensive monitoring for your custom application, including:
- **Request Metrics**: Track request volume, error rates, and latency
- **Log Analysis**: Structured logging with automatic level extraction
- **Performance Dashboards**: Pre-built dashboards for real-time insights
- **Alerting**: Proactive alerting for abnormal conditions
## Key Features
- Real-time request monitoring
- Error rate tracking and alerting
- Performance bottleneck identification
- Custom log processing pipelines
步骤4:创建配置指南
编写 config/prerequisites.md
:
# Prerequisites
Before installing this integration, ensure you have:
## Application Requirements
- Application instrumented with OpenTelemetry
- Logs exported in OTLP format
- Metrics exported with Prometheus compatibility
## SigNoz Requirements
- SigNoz version 0.25.0 or later
- OTLP receiver enabled
- Sufficient storage capacity for metrics and logs
## Network Configuration
- Port 4317 open for OTLP/gRPC traffic
- Port 4318 open for OTLP/HTTP traffic
- Proper firewall rules for data ingestion
高级功能开发
自定义数据处理管道
集成插件可以定义复杂的数据处理逻辑:
{
"assets": {
"logs": {
"pipelines": [
{
"alias": "custom-processing",
"name": "Custom Log Processing",
"filter": "resource.attributes.service.name == \"custom-app\"",
"config": {
"processors": [
{
"type": "attributes",
"actions": [
{
"key": "user_id",
"action": "extract",
"pattern": "user_id=([a-f0-9-]+)",
"from": "body"
},
{
"key": "session_id",
"action": "extract",
"pattern": "session=([a-f0-9-]+)",
"from": "body"
}
]
},
{
"type": "transform",
"log_statements": [
{
"context": "log",
"statements": [
"set(attributes[\"processed\"] = true)",
"set(attributes[\"processing_timestamp\"] = now())"
]
}
]
}
]
}
}
]
}
}
}
多仪表板支持
集成可以包含多个专用仪表板:
{
"assets": {
"dashboards": [
{
"id": "overview",
"title": "Custom App Overview",
"definition": "file://assets/dashboards/overview.json"
},
{
"id": "performance",
"title": "Performance Metrics",
"definition": "file://assets/dashboards/performance.json"
},
{
"id": "errors",
"title": "Error Analysis",
"definition": "file://assets/dashboards/errors.json"
}
]
}
}
测试与验证
连接状态测试
集成插件应该提供完整的连接测试配置:
{
"connection_tests": {
"logs": {
"attribute_key": "service.name",
"attribute_value": "custom-app"
},
"metrics": [
"custom_app_requests_total",
"custom_app_request_duration_bucket",
"custom_app_errors_total"
]
}
}
数据质量验证
确保收集的数据符合预期格式:
数据维度 | 验证方法 | 预期结果 |
---|---|---|
指标完整性 | 检查所有定义指标是否存在 | 所有指标都应被收集 |
日志结构 | 验证日志属性提取 | 属性应正确解析 |
数据时效性 | 检查数据时间戳 | 数据不应有较大延迟 |
数据一致性 | 验证关联数据关系 | 相关数据应保持一致性 |
最佳实践
开发规范
-
命名约定
- 使用小写字母和连字符命名集成ID
- 指标名称使用蛇形命名法
- 保持命名的一致性和描述性
-
文档完整性
- 提供完整的配置指南
- 包含故障排除章节
- 提供示例配置和代码片段
-
性能考虑
- 优化数据处理管道
- 避免不必要的属性提取
- 合理设置采样率
版本管理
故障排除
常见问题解决
问题现象 | 可能原因 | 解决方案 |
---|---|---|
集成安装失败 | 配置格式错误 | 验证JSON语法和必填字段 |
数据无法收集 | 网络连接问题 | 检查端口和防火墙设置 |
仪表板不显示 | 数据格式不匹配 | 验证指标名称和标签 |
告警不触发 | 表达式错误 | 检查PromQL语法 |
调试技巧
-
日志分析
# 查看集成相关日志 kubectl logs -l app=signoz-query-service | grep integration
-
数据验证
# 检查指标是否存在 curl -s "http://localhost:9090/api/v1/query?query=custom_app_requests_total"
-
连接测试
# 测试数据接收 curl -X POST http://localhost:4318/v1/logs -H "Content-Type: application/json" -d '{"logs": [...]}'
总结
SigNoz的插件系统提供了一个强大而灵活的框架,用于扩展平台功能和集成第三方系统。通过遵循本文介绍的开发规范和最佳实践,您可以创建高质量的自定义集成,为您的应用程序提供全面的可观测性支持。
记住成功的集成开发关键在于:
- 清晰的文档和配置指南
- 完整的数据收集定义
- 有效的连接测试机制
- 持续的性能优化和迭代
通过充分利用SigNoz插件系统的能力,您可以构建出真正满足业务需求的监控解决方案。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考