Machine Learning Refined:非线性学习与特征工程导论

Machine Learning Refined:非线性学习与特征工程导论

machine_learning_refined Notes, examples, and Python demos for the 2nd edition of the textbook "Machine Learning Refined" (published by Cambridge University Press). machine_learning_refined 项目地址: https://gitcode.com/gh_mirrors/ma/machine_learning_refined

函数概念的多元理解

在机器学习领域,"函数"这个概念远比数学公式要丰富得多。我们可以从三个维度来理解函数:

1. 数学函数(Mathematical Functions)

数学函数是我们最熟悉的形式,表现为明确的数学表达式,例如:

  • 线性函数:$y = wx + b$
  • 二次函数:$y = ax^2 + bx + c$
  • 逻辑Sigmoid函数:$\sigma(x) = \frac{1}{1+e^{-x}}$

这类函数的特点是可以用精确的数学公式表示,在机器学习中常用于构建模型的基础结构。

2. 算法函数(Algorithmic Functions)

算法函数是通过程序逻辑实现的功能性规则,例如:

  • 排序算法:将无序列表转换为有序列表
  • 梯度下降:优化函数的最小化过程
  • 词袋模型:将文本转换为词频直方图

这类函数更适合用代码而非数学公式来表达,它们构成了机器学习中许多核心算法的实现基础。

3. 经验函数(Empirical Functions)

经验函数体现为数据集中的输入-输出对应关系,例如监督学习中的训练数据:

| 输入特征 x | 输出标签 y | |------------|------------| | x₁ | y₁ | | x₂ | y₂ | | ... | ... | | xₙ | yₙ |

这种函数形式通过数据点之间的对应关系隐式地定义了映射规则。

三类函数的关系与转换

这三类函数并非相互排斥,而是可以相互转化和结合:

  1. 数学→算法:将数学公式实现为代码
  2. 算法→经验:通过算法生成数据点
  3. 经验→数学:从数据中拟合数学模型

例如,我们可以:

  1. 用代码实现一个线性函数(数学→算法)
  2. 生成一系列输入输出对(算法→经验)
  3. 绘制这些点来可视化函数(经验表达)

非线性学习中的函数应用

在非线性学习场景下,这三类函数的灵活运用尤为重要:

  1. 数学函数提供了非线性建模的基础框架
  2. 算法函数实现了复杂的特征转换和处理
  3. 经验函数为模型提供了学习的目标和依据

理解这三类函数的区别与联系,有助于我们更好地设计和实现机器学习系统,特别是在处理非线性问题时能够灵活选择合适的函数表达方式。

实际应用建议

  1. 当问题有明确的数学关系时,优先考虑数学函数表达
  2. 对于复杂的数据处理流程,采用算法函数实现
  3. 充分利用经验数据来验证和调整前两类函数的表现

这种多角度的函数理解方式,为后续深入探讨非线性学习和特征工程奠定了重要基础。

machine_learning_refined Notes, examples, and Python demos for the 2nd edition of the textbook "Machine Learning Refined" (published by Cambridge University Press). machine_learning_refined 项目地址: https://gitcode.com/gh_mirrors/ma/machine_learning_refined

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强和毓Hadley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值