Machine Learning Refined:非线性学习与特征工程导论
函数概念的多元理解
在机器学习领域,"函数"这个概念远比数学公式要丰富得多。我们可以从三个维度来理解函数:
1. 数学函数(Mathematical Functions)
数学函数是我们最熟悉的形式,表现为明确的数学表达式,例如:
- 线性函数:$y = wx + b$
- 二次函数:$y = ax^2 + bx + c$
- 逻辑Sigmoid函数:$\sigma(x) = \frac{1}{1+e^{-x}}$
这类函数的特点是可以用精确的数学公式表示,在机器学习中常用于构建模型的基础结构。
2. 算法函数(Algorithmic Functions)
算法函数是通过程序逻辑实现的功能性规则,例如:
- 排序算法:将无序列表转换为有序列表
- 梯度下降:优化函数的最小化过程
- 词袋模型:将文本转换为词频直方图
这类函数更适合用代码而非数学公式来表达,它们构成了机器学习中许多核心算法的实现基础。
3. 经验函数(Empirical Functions)
经验函数体现为数据集中的输入-输出对应关系,例如监督学习中的训练数据:
| 输入特征 x | 输出标签 y | |------------|------------| | x₁ | y₁ | | x₂ | y₂ | | ... | ... | | xₙ | yₙ |
这种函数形式通过数据点之间的对应关系隐式地定义了映射规则。
三类函数的关系与转换
这三类函数并非相互排斥,而是可以相互转化和结合:
- 数学→算法:将数学公式实现为代码
- 算法→经验:通过算法生成数据点
- 经验→数学:从数据中拟合数学模型
例如,我们可以:
- 用代码实现一个线性函数(数学→算法)
- 生成一系列输入输出对(算法→经验)
- 绘制这些点来可视化函数(经验表达)
非线性学习中的函数应用
在非线性学习场景下,这三类函数的灵活运用尤为重要:
- 数学函数提供了非线性建模的基础框架
- 算法函数实现了复杂的特征转换和处理
- 经验函数为模型提供了学习的目标和依据
理解这三类函数的区别与联系,有助于我们更好地设计和实现机器学习系统,特别是在处理非线性问题时能够灵活选择合适的函数表达方式。
实际应用建议
- 当问题有明确的数学关系时,优先考虑数学函数表达
- 对于复杂的数据处理流程,采用算法函数实现
- 充分利用经验数据来验证和调整前两类函数的表现
这种多角度的函数理解方式,为后续深入探讨非线性学习和特征工程奠定了重要基础。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考