MLCommons Inference 项目提交指南深度解析

MLCommons Inference 项目提交指南深度解析

inference Reference implementations of MLPerf™ inference benchmarks inference 项目地址: https://gitcode.com/gh_mirrors/inf/inference

前言

MLCommons Inference 是一个致力于推动机器学习推理性能基准测试的开源项目。作为技术专家,我将为大家详细解读该项目的提交规则和注意事项,帮助开发者更好地理解和参与这一重要的基准测试。

硬件要求详解

基础硬件要求

MLCommons Inference 项目对硬件平台持开放态度,从树莓派这样的嵌入式设备到高端推理服务器都可以参与基准测试。这种包容性设计使得各类硬件平台都能展示其推理性能。

数据中心类别的特殊要求

对于数据中心类别的"封闭"提交,有以下特殊要求:

  1. ECC内存:必须使用支持错误检查和纠正(ECC)的内存,这对数据中心环境的数据完整性至关重要
  2. 网络能力:需要满足特定的网络连接要求,这些要求会随版本更新而变化

功耗测试的特殊设备

如果提交功耗测试结果,必须使用经过SPEC Power认证的功率分析仪。这些专业设备能精确测量系统在不同负载下的功耗表现。

提交类别与要求

封闭类别(Closed Division)要求

  1. 性能与精度要求

    • 必须运行所有要求的场景(根据边缘/数据中心类别而定)
    • 精度必须在基准模型的99%或99.9%范围内(具体取决于任务要求)
  2. 模型权重限制

    • 不允许修改模型权重,量化处理除外
    • 违反此限制将导致提交只能归类为开放类别

参考模型与实现

  1. 参考模型多为FP32精度
  2. 参考实现仅供指导,不建议直接用于正式提交
    • 这些实现未针对性能优化
    • 各厂商应根据自身硬件特性开发优化实现

可用类别(Available Category)要求

  1. 提交系统必须已经可用(可以是部分可用)
    • 可以是公开可用或面向客户可用
  2. 使用的软件必须是正式版或beta版
    • 不接受夜间构建版等非稳定版本

基准测试执行指南

测试时间预估

  1. 数据中心类别

    • 需要运行离线(Offline)和服务器(Server)场景
    • 每个场景至少需要10分钟
  2. 边缘类别

    • 需要运行单流(SingleStream)、多流(MultiStream,仅限ResNet50和RetinaNet)和离线场景
    • 每个场景至少需要10分钟
    • ResNet50需要额外运行三个合规性测试
  3. 场景特性

    • 单流、多流和服务器场景使用提前终止机制,通常10分钟左右完成
    • 离线场景需要处理至少24756个输入查询
      • 对于3DUNet、大语言模型等复杂模型,可能耗时数小时
  4. 开放类别优势

    • 无精度要求
    • 无需合规性测试
    • 可以只提交单个场景结果
    • 模型选择更自由(但需在指定数据集上验证精度)
  5. 功耗测试额外要求

    • 需要额外运行范围模式以确定峰值电流使用
    • 这会显著增加总测试时间
    • 可通过特定机制将范围运行缩短至5分钟

提交有效性验证

自动检查工具

项目提供了提交检查器(Submission Checker),用于验证提交是否符合基本要求。这个工具会检查:

  1. 文件结构完整性
  2. 必填字段存在性
  3. 基本格式合规性

人工审查要点

即使通过了自动检查,提交仍需接受人工审查,重点包括:

  1. 系统描述文件的合理性
  2. 功耗测试相关文件的详细内容
    • 功率设置
    • 分析仪表格
  3. README文件的完整性和可复现性
  4. 数据中心封闭提交的特殊要求符合性

版本4.0的重要变更

  1. 新增基准模型

    • 数据中心类别新增Mixtral-8x7B模型
    • 边缘类别保持不变
  2. 功耗测试

    • 代码层面无变化
    • 原有流程和要求保持不变

专业建议

  1. 提前规划

    • 校准文档需在截止日期前一周提交
    • 复杂模型测试可能需要数天时间
  2. 合规性测试

    • 预留足够时间进行多次合规性测试
    • 特别是ResNet50需要三次合规性测试
  3. 功耗测试准备

    • 提前获取SPEC PTDaemon访问权限
    • 准备好经认证的功率分析仪
  4. 性能优化

    • 参考实现仅作指导
    • 应根据目标硬件特性深度优化实现

通过遵循这些指南和建议,开发者可以更高效地参与MLCommons Inference基准测试,准确展示其硬件和软件解决方案的推理性能。

inference Reference implementations of MLPerf™ inference benchmarks inference 项目地址: https://gitcode.com/gh_mirrors/inf/inference

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邱廷彭Maria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值