【限时免费】 项目实战:用Qwen3-30B-A3B-Base构建一个智能会议纪要生成器,只需100行代码!...

项目实战:用Qwen3-30B-A3B-Base构建一个智能会议纪要生成器,只需100行代码!

【免费下载链接】Qwen3-30B-A3B-Base Qwen3-30B-A3B-Base具有以下特点: 类型:因果语言模型 训练阶段:预训练 参数数量:总计 305 亿,其中已激活 33 亿 参数数量(非嵌入):29.9B 层数:48 注意力头数量(GQA):Q 为 32 个,KV 为 4 个 专家人数:128 已激活专家数量:8 上下文长度:32,768 【免费下载链接】Qwen3-30B-A3B-Base 项目地址: https://gitcode.com/hf_mirrors/Qwen/Qwen3-30B-A3B-Base

项目构想:我们要做什么?

在现代职场中,会议是信息传递和决策制定的重要环节。然而,会议内容的记录和整理往往耗费大量时间。为了解决这一问题,我们设计了一个基于Qwen3-30B-A3B-Base模型的智能会议纪要生成器。该工具能够自动将会议录音或文字记录转换为结构化的会议纪要,包括会议主题、关键讨论点、决策事项和待办任务等。

输入:会议的录音文件(需转换为文本)或直接输入会议的文字记录。
输出:结构化的会议纪要,包含以下部分:

  1. 会议主题
  2. 关键讨论点
  3. 决策事项
  4. 待办任务(分配责任人)

技术选型:为什么是Qwen3-30B-A3B-Base?

Qwen3-30B-A3B-Base作为Qwen系列的最新模型,具有以下核心亮点,非常适合实现智能会议纪要生成器:

  1. 多语言与高质量预训练数据:支持119种语言,能够处理多语言会议记录,同时高质量的数据集确保了生成的纪要内容准确且流畅。
  2. 长上下文理解能力:支持32k tokens的上下文长度,能够处理长时间的会议记录,确保关键信息不遗漏。
  3. 推理与逻辑能力:模型在第二阶段训练中强化了推理能力,能够从会议内容中提取关键讨论点和决策事项。
  4. 高效的MoE架构:虽然模型参数量大,但每次推理仅激活3.3B参数,保证了较高的推理效率。

这些特性使得Qwen3-30B-A3B-Base成为实现智能会议纪要生成的理想选择。

核心实现逻辑

项目的核心逻辑分为以下几步:

  1. 输入处理:将会议录音通过语音识别API转换为文本,或直接接收用户输入的文字记录。
  2. Prompt设计:设计一个清晰的Prompt,指导模型从会议文本中提取结构化信息。例如:
    请根据以下会议记录生成一份结构化的会议纪要:
    1. 会议主题
    2. 关键讨论点(分条列出)
    3. 决策事项(分条列出)
    4. 待办任务(包括责任人)
    会议记录:{输入文本}
    
  3. 模型调用:使用Qwen3-30B-A3B-Base模型处理输入文本,生成会议纪要。
  4. 输出格式化:将模型生成的文本转换为更易读的格式(如Markdown或JSON)。

代码全览与讲解

以下是完整的项目代码,基于Qwen3-30B-A3B-Base的快速上手代码扩展而来:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# 初始化模型和分词器
model_name = "Qwen/Qwen3-30B-A3B-Base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")

def generate_meeting_summary(meeting_text):
    # 设计Prompt
    prompt = f"""
    请根据以下会议记录生成一份结构化的会议纪要:
    1. 会议主题
    2. 关键讨论点(分条列出)
    3. 决策事项(分条列出)
    4. 待办任务(包括责任人)
    会议记录:{meeting_text}
    """

    # 编码输入
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    # 生成会议纪要
    outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.7)
    summary = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return summary

# 示例会议记录
meeting_text = """
今天会议主要讨论了新产品的发布计划。开发团队表示目前进度正常,预计下月完成测试。市场团队提出需要更多宣传材料。最终决定:1. 开发团队确保测试按时完成;2. 市场团队在本周内提供宣传材料需求清单。
"""

# 生成并打印会议纪要
summary = generate_meeting_summary(meeting_text)
print(summary)

代码讲解:

  1. 模型加载:使用transformers库加载Qwen3-30B-A3B-Base模型和分词器。
  2. Prompt设计:通过模板将会议记录嵌入到Prompt中,指导模型生成结构化内容。
  3. 生成与解码:调用模型的generate方法生成会议纪要,并通过分词器解码为可读文本。

效果展示与功能扩展

效果展示

输入示例会议记录后,生成的会议纪要如下:

1. 会议主题:新产品发布计划讨论  
2. 关键讨论点:  
   - 开发团队进度正常,预计下月完成测试。  
   - 市场团队需要更多宣传材料。  
3. 决策事项:  
   - 开发团队确保测试按时完成。  
   - 市场团队在本周内提供宣传材料需求清单。  
4. 待办任务:  
   - 开发团队:完成测试(责任人:开发团队)  
   - 市场团队:提供宣传材料需求清单(责任人:市场团队)  

功能扩展

  1. 多语言支持:利用模型的多语言能力,支持非中文会议记录的纪要生成。
  2. 语音输入集成:结合语音识别API,实现从录音直接生成纪要。
  3. 交互式编辑:允许用户对生成的纪要进行手动调整和补充。
  4. 历史记录存储:将生成的纪要保存到数据库,方便后续检索和分析。

通过这个项目,我们可以看到Qwen3-30B-A3B-Base在自然语言处理任务中的强大能力。希望这篇教程能激发你动手尝试,构建更多有趣的应用!

【免费下载链接】Qwen3-30B-A3B-Base Qwen3-30B-A3B-Base具有以下特点: 类型:因果语言模型 训练阶段:预训练 参数数量:总计 305 亿,其中已激活 33 亿 参数数量(非嵌入):29.9B 层数:48 注意力头数量(GQA):Q 为 32 个,KV 为 4 个 专家人数:128 已激活专家数量:8 上下文长度:32,768 【免费下载链接】Qwen3-30B-A3B-Base 项目地址: https://gitcode.com/hf_mirrors/Qwen/Qwen3-30B-A3B-Base

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值