【亲测免费】 爬取豆瓣电影评论数据指南

爬取豆瓣电影评论数据指南

【下载地址】爬取豆瓣电影评论数据指南 本文档详细介绍了一个用于爬取豆瓣电影评论的Python脚本,包括评论内容、星级评价、评论时间以及点赞支持人数等关键信息。此资源为数据分析师、电影爱好者以及学习网络爬虫技术的开发者提供了宝贵的实践材料。通过使用requests库来发送HTTP请求,结合BeautifulSoup进行HTML内容的解析,本脚本能够有效地从豆瓣电影平台抓取指定电影的评论数据 【下载地址】爬取豆瓣电影评论数据指南 项目地址: https://gitcode.com/Resource-Bundle-Collection/c9bb6

概述

本文档详细介绍了一个用于爬取豆瓣电影评论的Python脚本,包括评论内容、星级评价、评论时间以及点赞支持人数等关键信息。此资源为数据分析师、电影爱好者以及学习网络爬虫技术的开发者提供了宝贵的实践材料。通过使用requests库来发送HTTP请求,结合BeautifulSoup进行HTML内容的解析,本脚本能够有效地从豆瓣电影平台抓取指定电影的评论数据。

主要功能

  • 评论内容: 抓取每条评论的具体文字内容。
  • 星级评价: 获取评论对应的星级,反映观众的评价等级。
  • 评论时间: 记录评论发表的时间点。
  • 支持人数: 统计每条评论获得的点赞数。

使用教程

  1. 环境准备
    确保已安装Python环境,并配置以下库:

    • requests
    • beautifulsoup4
    • pandas
  2. 核心代码概览
    示例代码片段展示了如何获取数据的基本逻辑:

    import requests
    from bs4 import BeautifulSoup
    import pandas as pd
    
    items = []
    for i in range(0, 25):
        url = f'https://movie.douban.com/subject/电影ID/comments?start={20 * i}&limit=20&sort=new_score&status=P'
        headers = {'User-Agent': '标准User-Agent'}
        r = requests.get(url, headers=headers)
        time.sleep(1)  # 适度延时,尊重网站规则
        soup = BeautifulSoup(r.text, 'html.parser')
        comments_list = soup.find_all('div', class_="comment-item")
        for comment in comments_list:
            votes = comment.find('span', class_='votes').text
            content = comment.find('span', class_='short').text
            author = comment.find('span', class_='comment-info').find('a').text
            comment_time = comment.find('span', class_='comment-time').get('title')
            star_rating = comment.find('span', class_='comment-info').find_all('span')[1].get('class')[0][-2]
            item = [author, comment_time, star_rating, votes, content]
            items.append(item)
    df = pd.DataFrame(items, columns=['评论人', '评论时间', '星级', '支持人数', '评论内容'])
    df.to_csv('豆瓣电影评论.csv', encoding='utf_8_sig')
    
  3. 注意事项

    • 替换示例中的 '电影ID' 为实际想爬取的电影ID。
    • 加入延时(time.sleep(1))以避免因请求过于频繁导致的IP封锁。
    • 遵守豆瓣网站的服务条款,合理安排爬取频率,避免滥用。
    • 本脚本仅为教育用途,真实应用时需考虑数据版权及隐私保护。
  4. 数据处理与分析
    抓取完成后,数据将以CSV格式存储,便于进一步的数据清洗、分析或视觉化展示。

结论

借助以上指南,您可以成功获取并分析豆瓣电影的评论数据,这对于市场调研、电影趋势分析或是个人项目开发都是极具价值的。记得在实践中不断调整和完善代码,确保其高效运行同时保持合规性。

【下载地址】爬取豆瓣电影评论数据指南 本文档详细介绍了一个用于爬取豆瓣电影评论的Python脚本,包括评论内容、星级评价、评论时间以及点赞支持人数等关键信息。此资源为数据分析师、电影爱好者以及学习网络爬虫技术的开发者提供了宝贵的实践材料。通过使用requests库来发送HTTP请求,结合BeautifulSoup进行HTML内容的解析,本脚本能够有效地从豆瓣电影平台抓取指定电影的评论数据 【下载地址】爬取豆瓣电影评论数据指南 项目地址: https://gitcode.com/Resource-Bundle-Collection/c9bb6

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 使用XPath爬取豆瓣电影评论的代码示例 以下是一个使用Scrapy框架和XPath选择器爬取豆瓣电影评论的代码示例。此代码基于Scrapy框架,定义了一个Spider类,并通过XPath提取评论信息[^1]。 ```python import scrapy class CommentItem(scrapy.Item): movie_name = scrapy.Field() # 电影名称 comment = scrapy.Field() # 评论内容 user = scrapy.Field() # 用户名 rating = scrapy.Field() # 评分 class DoubanCommentSpider(scrapy.Spider): name = 'douban_comment' allowed_domains = ['douban.com'] start_urls = ['https://movie.douban.com/subject/1292052/comments?start=0&limit=20&sort=new_score&status=P'] # 示例链接,需替换为实际电影评论页 def parse(self, response): comments = response.xpath('//div[@class="comment"]') # 定位评论块 for comment in comments: item = CommentItem() item['user'] = comment.xpath('.//span[@class="comment-info"]/a/text()').get() # 提取用户名 item['rating'] = comment.xpath('.//span[@class="comment-info"]/span[2]/@title').get() # 提取评分 item['comment'] = comment.xpath('.//p[@class=""]/text()').get().strip() # 提取评论内容 item['movie_name'] = response.xpath('//span[@property="v:itemreviewed"]/text()').get() # 提取电影名称 yield item # 获取下一页链接 next_page = response.xpath('//a[@class="next"]/@href').get() if next_page: yield response.follow(next_page, callback=self.parse) ``` #### 代码说明 1. **数据结构定义**:`CommentItem` 类中定义了需要爬取的字段,包括电影名称、评论内容、用户名和评分[^3]。 2. **Spider初始化**:`DoubanCommentSpider` 是一个继承自 `scrapy.Spider` 的类,`start_urls` 包含初始请求的URL列表。 3. **解析逻辑**:`parse()` 方法通过XPath定位评论块并提取相关信息,如用户名、评分和评论内容[^2]。 4. **翻页处理**:通过XPath获取下一页链接,并递归调用 `parse()` 方法进行进一步爬取。 ### 注意事项 - 确保目标网站允许爬虫访问,遵守robots.txt规则。 - 豆瓣网站可能存在反爬机制,建议设置合理的下载延迟(DOWNLOAD_DELAY)以避免被封禁。 - 如果需要保存数据,可以配置Scrapy的管道文件将结果导出到JSON或CSV文件[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏杨晴Vivian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值