Franky机器人控制中的关节运动噪声问题分析与解决方案
问题现象描述
在使用Franky库控制Franka Emika机器人时,开发人员观察到一个普遍现象:当机器人执行关节空间点对点运动时,会产生明显的抖动噪声。这一问题在实验室的多台机器人上均能复现,排除了硬件个体差异的可能性。
问题复现条件
该问题出现在执行基本的关节空间运动时,例如以下典型代码场景:
m1 = JointWaypointMotion([JointWaypoint([-0.3, 0.1, 0.3, -1.4, 0.1, 1.8, 0.7])])
m2 = JointWaypointMotion([
JointWaypoint([-0.3, 0.1, 0.3, -1.4, 0.1, 1.8, 0.7]),
JointWaypoint([0.0, 0.3, 0.3, -1.5, -0.2, 1.5, 0.8]),
JointWaypoint([0.1, 0.4, 0.3, -1.4, -0.3, 1.7, 0.9])
])
robot.move(m1)
robot.move(m2)
技术分析
1. 运动规划机制
Franky库使用Ruckig运动规划器来计算时间最优轨迹。在关节空间运动中,规划器会根据配置的加加速度( jerk )、加速度和速度限制来计算各关节的运动轨迹。值得注意的是,免费版本的Ruckig不支持自动计算中间路点的最优速度,因此默认情况下机器人在到达每个路点时会完全停止。
2. 噪声产生原因
经过深入分析,噪声问题可能与以下因素有关:
- 关节控制器切换:噪声特别容易出现在运动序列的第一个动作中,可能与机器人切换到关节控制模式的过程有关
- 轨迹规划特性:即使命令机器人保持当前位置,也会出现类似噪声
- 控制信号分析:通过回调函数记录的实际轨迹与控制信号的对比显示,可能存在微小的不连续或高频分量
3. 运动流畅性优化
对于需要流畅连续运动的场景,开发者可以手动设置中间路点的目标速度(而非默认的0速度)。这需要额外的轨迹规划计算,例如使用三次样条插值等方法预先计算各路点的合理速度值。
解决方案与最佳实践
1. 噪声问题缓解方案
虽然完全消除噪声可能需要底层控制器的调整,但以下方法可以减轻问题影响:
- 降低运动动力学参数(速度、加速度、加加速度)
- 确保机器人充分预热
- 检查关节温度是否在正常范围内
2. 流畅运动实现方法
要实现连续流畅的关节空间运动,建议:
# 示例:设置中间路点速度
waypoints = [
JointWaypoint([-0.3, 0.1, 0.3, -1.4, 0.1, 1.8, 0.7], velocity=[0.1]*7),
JointWaypoint([0.0, 0.3, 0.3, -1.5, -0.2, 1.5, 0.8], velocity=[0.1]*7),
JointWaypoint([0.1, 0.4, 0.3, -1.4, -0.3, 1.7, 0.9])
]
motion = JointWaypointMotion(waypoints)
3. 诊断工具
开发者可以使用Franky提供的回调机制进行运动诊断:
traj = []
def callback(robot_state, time_step, rel_time, abs_time, control_signal):
traj.append((abs_time, robot_state.q, control_signal.q))
motion.register_callback(callback)
robot.move(motion)
通过分析收集的数据,可以深入了解实际运动与控制信号的差异,帮助优化运动参数。
总结
Franky机器人的关节运动噪声问题涉及底层控制与运动规划的复杂交互。虽然完全消除可能需要更深入的系统级调整,但通过合理设置运动参数、优化路点速度以及使用诊断工具,开发者可以显著改善机器人的运动表现。对于要求高流畅性的应用场景,建议预先计算合理的路点速度参数,并适当降低运动动力学限制参数。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考