【免费下载】 开源项目推荐:sherpa-onnx

开源项目推荐:sherpa-onnx

1. 项目基础介绍和主要编程语言

sherpa-onnx 是一个基于下一代 Kaldi 和 onnxruntime 的开源项目,专注于语音识别、文本转语音、说话人识别和语音活动检测(VAD)等功能。该项目支持在没有互联网连接的情况下本地运行,适用于嵌入式系统、Android、iOS、Raspberry Pi、RISC-V 和 x86_64 服务器等多种平台。

主要编程语言

  • C++
  • C
  • Python
  • JavaScript
  • Java
  • C#
  • Kotlin
  • Swift
  • Go
  • Dart
  • Rust
  • Pascal

2. 项目的核心功能

sherpa-onnx 提供了以下核心功能:

  • 语音识别(Speech-to-Text, ASR):支持流式和非流式语音识别。
  • 文本转语音(Text-to-Speech, TTS):将文本转换为语音。
  • 说话人识别(Speaker Recognition):包括说话人验证和说话人识别。
  • 语音活动检测(Voice Activity Detection, VAD):检测语音中的活动部分。
  • 关键词检测(Keyword Spotting):识别语音中的特定关键词。
  • 语音语言识别(Spoken Language Identification):识别语音的语言。
  • 音频标签(Audio Tagging):为音频文件添加标签。

3. 项目最近更新的功能

sherpa-onnx 最近更新的功能包括:

  • 2024-07-03:增加了对 Docker 的支持,用户可以通过 Docker 轻松体验语音识别功能。
  • 2024-06-10:在 Android 平台上增加了本地 TTS 语言转文本引擎。
  • 2024-06-10:从零开始搭建 Windows 贾维斯系统的第一部分。
  • 2024-05-09:记录了 sherpa-onnx 的安装及使用方法。
  • 2024-04-09:在 rv1106、rv1109 和 rv1126 上移植了 sherpa-onnx。

这些更新进一步增强了 sherpa-onnx 的功能和适用性,使其在多种平台和场景下都能提供高效的语音处理能力。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

Sherpa ONNX是一个用于将ONNX模型部署到移动设备(如Android)的工具包。ONNX是一种跨平台的机器学习模型交换格式,而Sherpa则是Facebook开源的一个轻量级模型优化和量化库。要在Android上整合Sherpa ONNX,你可以按照以下步骤操作: 1. **安装依赖**:首先,你需要在项目中添加SherpaONNX的相关依赖,通常通过Gradle将`com.facebook.sherpa:lib`和`com.facebook.onnx:onnx`库引入。 ```groovy dependencies { implementation 'com.facebook.sherpa:lib:<latest_version>' implementation 'com.facebook.onnx:onnx:<latest_version>' } ``` 记得替换 `<latest_version>` 为实际版本号。 2. **加载模型**:使用Sherpa的API从ONNX文件加载模型,并可能对模型进行优化或量化以适应移动设备资源限制。 ```java Model model = Model.loadFromOnnxFile("path_to_your_model.onnx"); Optimization optimization = new Optimization(model); optimizedModel = optimization.optimize(); ``` 3. **转换为TensorFlow Lite或TFLite Micro**:Sherpa支持将优化后的模型转换为TensorFlow Lite(tflite)格式,然后可以在Android平台上使用。 ```java Converter converter = new TfliteConverter(optimizedModel); byte[] tfliteModel = converter.convertToTflite(); ``` 4. **保存和加载模型**:最后,将生成的TFLite模型保存到Android应用的Assets目录或存储空间,然后在运行时动态加载并使用。 5. **在Android应用中使用**:利用Android的TensorFlow Lite API,在应用程序中加载并运行转换后的模型进行推理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甄登汉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值