Instruct-GS2GS项目中关于3D高斯泼溅与NeRF训练差异的技术解析
3D高斯泼溅与NeRF在训练机制上的本质区别
在3D场景重建领域,NeRF(神经辐射场)和3D高斯泼溅(3D Gaussian Splatting,简称3DGS)代表了两种不同的技术路线。Instruct-GS2GS项目团队在开发过程中发现,这两种方法在训练机制上存在一个关键性差异,这直接影响了数据集更新的实现方式。
基于射线的NeRF训练机制
NeRF采用基于射线的训练方式是其核心特征之一。在训练过程中,系统会从相机位置随机采样大量射线,每条射线对应图像中的一个像素点。这种机制带来了几个重要优势:
- 像素级采样:可以随机选择训练集中的任意像素进行训练,不受完整图像的限制
- 混合训练:同一批次可以包含来自不同图像的像素点
- 灵活更新:可以单独更新图像中的部分区域而不影响整体
这种特性使得NeRF在进行数据集更新时,可以在单个训练步骤中混合使用已编辑和未编辑的图像数据,因为系统处理的是像素级别的信息。
3D高斯泼溅的全图像渲染特性
相比之下,3D高斯泼溅采用了完全不同的渲染策略:
- 完整图像渲染:必须一次性渲染整张图像,无法单独处理个别像素
- 图像级损失计算:优化过程基于完整图像的比较,而非单个像素
- 批量处理限制:每个训练步骤必须处理完整的图像数据
这种机制导致了在数据集更新时无法像NeRF那样灵活地混合使用已编辑和未编辑的数据。在3DGS的训练过程中,每个优化步骤要么使用完全编辑过的图像,要么使用原始未编辑的图像,无法在单个步骤中实现混合信号。
Instruct-GS2GS的解决方案
针对这一技术挑战,Instruct-GS2GS项目团队开发了创新的数据集更新策略:
- 子集更新机制:仅更新数据集中的部分图像,保持其余图像不变
- 随机图像采样:在优化过程中随机选择完整图像进行训练
- 渐进式更新:通过多次迭代,使系统逐步接触已编辑的图像数据
这种方法虽然不如NeRF的像素级混合灵活,但在3D高斯泼溅框架下提供了有效的数据集更新途径,确保了编辑效果能够稳定地融入模型。
技术选择的深层考量
这种差异实际上反映了两种技术路线的根本不同。NeRF的连续体积表示天然适合射线追踪和点采样,而3D高斯泼溅的离散表示更适合基于图元的完整场景渲染。理解这一区别对于开发者选择适合自己项目的技术路线至关重要,特别是在需要考虑交互式编辑或动态更新的应用场景中。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考