PyTorch 实现联邦学习 FedAvg(详解)
简介
本资源文件提供了一个基于 PyTorch 实现的联邦学习(Federated Learning)框架,具体实现为 FedAvg 算法。FedAvg 是一种分布式机器学习框架,允许多个用户(客户端)在本地数据上训练模型,而无需将私有数据上传到中心服务器。本地用户负责训练本地数据,生成本地模型,中心服务器则负责加权聚合这些本地模型,形成全局模型。经过多轮迭代后,最终得到一个趋近于集中式机器学习结果的模型。这种方法有效地降低了传统机器学习中数据聚合带来的隐私风险。
主要特点
- 分布式训练:允许多个客户端在本地数据上进行模型训练,无需上传私有数据。
- 隐私保护:通过本地训练和模型聚合,避免了直接上传敏感数据,保护用户隐私。
- 高效聚合:中心服务器通过加权平均的方式聚合本地模型,形成全局模型,加速模型收敛。
- 易于扩展:框架设计灵活,易于扩展到不同的应用场景和数据集。
使用方法
-
克隆仓库:
git clone https://github.com/your-repo-url.git cd fedavg-pytorch
-
安装依赖:
pip install -r requirements.txt
-
运行示例:
python main.py
-
自定义配置: 可以通过修改
config.py
文件中的参数来调整训练轮数、客户端数量、本地训练轮数等。
目录结构
fedavg-pytorch/
├── data/
│ └── ... # 数据集目录
├── models/
│ └── ... # 模型定义文件
├── utils/
│ └── ... # 工具函数文件
├── main.py # 主程序入口
├── config.py # 配置文件
└── README.md # 本文件
参考文献
- McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS).
贡献
欢迎大家提出问题、建议或贡献代码。请通过 GitHub 的 Issues 和 Pull Requests 功能进行交流。
许可证
本项目采用 MIT 许可证,详情请参阅 LICENSE 文件。
希望通过本资源文件,您能够更好地理解和应用联邦学习技术,尤其是在隐私保护和分布式训练方面。如果您有任何问题或建议,请随时联系我们。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考