【亲测免费】 PyTorch 实现联邦学习 FedAvg(详解)

PyTorch 实现联邦学习 FedAvg(详解)

【下载地址】PyTorch实现联邦学习FedAvg详解 本资源文件提供了一个基于 PyTorch 实现的联邦学习(Federated Learning)框架,具体实现为 FedAvg 算法。FedAvg 是一种分布式机器学习框架,允许多个用户(客户端)在本地数据上训练模型,而无需将私有数据上传到中心服务器。本地用户负责训练本地数据,生成本地模型,中心服务器则负责加权聚合这些本地模型,形成全局模型。经过多轮迭代后,最终得到一个趋近于集中式机器学习结果的模型。这种方法有效地降低了传统机器学习中数据聚合带来的隐私风险。 【下载地址】PyTorch实现联邦学习FedAvg详解 项目地址: https://gitcode.com/open-source-toolkit/291ac

简介

本资源文件提供了一个基于 PyTorch 实现的联邦学习(Federated Learning)框架,具体实现为 FedAvg 算法。FedAvg 是一种分布式机器学习框架,允许多个用户(客户端)在本地数据上训练模型,而无需将私有数据上传到中心服务器。本地用户负责训练本地数据,生成本地模型,中心服务器则负责加权聚合这些本地模型,形成全局模型。经过多轮迭代后,最终得到一个趋近于集中式机器学习结果的模型。这种方法有效地降低了传统机器学习中数据聚合带来的隐私风险。

主要特点

  • 分布式训练:允许多个客户端在本地数据上进行模型训练,无需上传私有数据。
  • 隐私保护:通过本地训练和模型聚合,避免了直接上传敏感数据,保护用户隐私。
  • 高效聚合:中心服务器通过加权平均的方式聚合本地模型,形成全局模型,加速模型收敛。
  • 易于扩展:框架设计灵活,易于扩展到不同的应用场景和数据集。

使用方法

  1. 克隆仓库

    git clone https://github.com/your-repo-url.git
    cd fedavg-pytorch
    
  2. 安装依赖

    pip install -r requirements.txt
    
  3. 运行示例

    python main.py
    
  4. 自定义配置: 可以通过修改 config.py 文件中的参数来调整训练轮数、客户端数量、本地训练轮数等。

目录结构

fedavg-pytorch/
├── data/
│   └── ...  # 数据集目录
├── models/
│   └── ...  # 模型定义文件
├── utils/
│   └── ...  # 工具函数文件
├── main.py  # 主程序入口
├── config.py  # 配置文件
└── README.md  # 本文件

参考文献

  • McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS).

贡献

欢迎大家提出问题、建议或贡献代码。请通过 GitHub 的 Issues 和 Pull Requests 功能进行交流。

许可证

本项目采用 MIT 许可证,详情请参阅 LICENSE 文件。


希望通过本资源文件,您能够更好地理解和应用联邦学习技术,尤其是在隐私保护和分布式训练方面。如果您有任何问题或建议,请随时联系我们。

【下载地址】PyTorch实现联邦学习FedAvg详解 本资源文件提供了一个基于 PyTorch 实现的联邦学习(Federated Learning)框架,具体实现为 FedAvg 算法。FedAvg 是一种分布式机器学习框架,允许多个用户(客户端)在本地数据上训练模型,而无需将私有数据上传到中心服务器。本地用户负责训练本地数据,生成本地模型,中心服务器则负责加权聚合这些本地模型,形成全局模型。经过多轮迭代后,最终得到一个趋近于集中式机器学习结果的模型。这种方法有效地降低了传统机器学习中数据聚合带来的隐私风险。 【下载地址】PyTorch实现联邦学习FedAvg详解 项目地址: https://gitcode.com/open-source-toolkit/291ac

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值