题目
数组的每个索引作为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost[i] (索引从0开始)。
每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。
示例 1:
输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例 2:
输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
注意:
1. cost 的长度将会在 [2, 1000]。
2. 每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/min-cost-climbing-stairs
解题思路
这题感觉是121.买卖股票的最佳时机与70.爬楼梯的结合体。
到达当前阶梯的最小体力花费是 min(到达前一级阶梯已花费体力+本级阶梯所花体力,到达前两级阶梯已花费体力+本级阶梯所花体力)
递推公式 f(n)=min(f(n-1)+cost(n),f(n-2)+cost(n))
代码(C++)
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size());
dp[0]=cost[0];
dp[1]=cost[1];
int n=dp.size()-1;
for(int i=2;i<=n;++i){
dp[i]=min(cost[i]+dp[i-1],cost[i]+dp[i-2]);
}
return dp[n]>dp[n-1]?dp[n-1]:dp[n];
}
};
.