62. 不同路径

该博客讨论了一种使用动态规划方法解决计算机器人在网格中从左上角到达右下角的不同路径数量的问题。通过定义dp数组,确定元素间的关系(dp[i][j]=dp[i-1][j]+dp[i][j-1]),并设置边界条件,最终得出解决方案。代码实现中展示了如何用O(m*n)的时间复杂度完成这一计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

62. 不同路径

难度

中等。

描述

假设有一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

例如,上图是一个 7 x 3 的网格。有多少可能的路径?

示例 1:

输入: m = 3, n = 2

输出: 3

解释:

从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下

  2. 向右 -> 向下 -> 向右

  3. 向下 -> 向右 -> 向右
    示例 2:

输入: m = 7, n = 3

输出: 28

解答

解题思路

采用动态规划的方法,主要分三步走:

  1. 定义数组元素含义: 首先定义 dp[i][j] 是机器人从左上角走到 (i, j) 时,那么就共有 dp[i][j] 种方案;
  2. 找到关系数组元素间的关系式: 其次,如果要到达 (i, j) 位置,主要有两种方法。第一种是从 (i - 1, j) 走一步就到,另一种是从 (i, j - 1) 走一步到达,因此关系是为两种情况相加:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
  3. 找出初始值: 最后一定不要忘了初始值即边界条件,当我们在最上面一行或者最左边一列时,此时都只有一种方案,我们就将其值初始化为 1

代码实现

public int uniquePaths(int m, int n) {

    if(m <= 0 || n <= 0){
        return 0;
    }

    int[][] dp = new int[m][n];

    // 边界情况,初始值
    // 1. 最上方
    for(int i = 0; i < m; i++){
        dp[i][0] = 1;
    }

    // 2. 最左方
    for(int i = 0; i < n; i++){
        dp[0][i] = 1;
    }

    // 元素间的关系
    for(int i = 1; i < m; i++){
        for(int j = 1; j < n; j++){
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }

    return dp[m - 1][n - 1];
}

时间复杂度

主要是双层循环,所以复杂度是 O(m * n),其中 mn 分别是棋盘的长和宽。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村雨遥

众筹一毛买键盘!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值