模型优化:超参数调优与神经架构搜索
在机器学习领域,我们常常需要寻找最适合特定用例和数据集的模型。超参数调优(Hyperparameter Tuning,HPT)和神经架构搜索(Neural Architecture Search,NAS)是两种常用的模型优化技术。本文将介绍HPT的相关概念、重要性以及在Google Vertex AI上设置和启动HPT作业的具体步骤。
1. 什么是HPT及其重要性
在训练机器学习系统时,我们通常会涉及三种数据:输入数据、模型参数和模型超参数。输入数据即与我们要解决的问题相关的训练或测试数据;模型参数是在模型训练过程中需要调整以拟合训练数据的变量;而模型超参数则是在训练开始前就需要确定的、控制训练过程本身的变量,例如学习率、优化器、批量大小、神经网络中的隐藏层数量以及基于树的算法中的最大深度等。
HPT是一种为学习算法选择一组最优超参数的模型优化技术。机器学习模型的性能在很大程度上取决于训练前选择的超参数。不同的超参数值会对模型的性能指标(如准确率)、训练时间、偏差、公平性等产生显著影响。每个HPT作业都有一个与之相关的目标函数,它会尝试对该目标函数进行优化(最小化或最大化),并返回能够实现该最优值的超参数值。这个目标函数可以与模型训练目标(如损失函数)相似,也可以是一个全新的指标。
一个典型的HPT作业会运行多个使用不同超参数集的试验,并返回导致最佳试验的超参数。这里的最佳试验代表了优化了与HPT作业相关的目标函数的试验。
在运行HPT时,我们需要选择合适的搜索算法在超参数空间中进行搜索。常见的搜索算法有以下几种:
- 网格搜索(Grid Search) :