自然语言模型——检测假新闻文章
1. 传统机器学习方法检测假新闻
在检测假新闻的任务中,我们可以使用传统的机器学习方法。以下是具体步骤:
1. 数据预处理
- 对新闻内容进行处理,去除不必要的信息,如停用词、数字等,并进行词干提取。
porter_stemmer = PorterStemmer()
news_df['processed_content'] = news_df.content.apply(lambda content: clean_and_prepare_content(content))
- 将处理后的内容和标签分别存储在数组中。
X = news_df.processed_content.values
y = news_df.label.values
print(X.shape, y.shape)
- 文本向量化
- 由于机器学习算法只能处理数字,我们需要将文本数据转换为数值格式。这里使用TF-IDF特征。
vectorizer = TfidfVectorizer()
vectorizer.fit(X)
X = vectorizer.transform(X)
p