33、自然语言模型——检测假新闻文章

自然语言模型——检测假新闻文章

1. 传统机器学习方法检测假新闻

在检测假新闻的任务中,我们可以使用传统的机器学习方法。以下是具体步骤:
1. 数据预处理
- 对新闻内容进行处理,去除不必要的信息,如停用词、数字等,并进行词干提取。

porter_stemmer = PorterStemmer()
news_df['processed_content'] = news_df.content.apply(lambda content: clean_and_prepare_content(content))
- 将处理后的内容和标签分别存储在数组中。
X = news_df.processed_content.values
y = news_df.label.values
print(X.shape, y.shape)
  1. 文本向量化
    • 由于机器学习算法只能处理数字,我们需要将文本数据转换为数值格式。这里使用TF-IDF特征。
vectorizer = TfidfVectorizer()
vectorizer.fit(X)
X = vectorizer.transform(X)
p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值