一、题目描述
- 字典序在ab、ce之间的且长度为1的字符串是
b、c- 字典序在ab、ce之间的且长度为2的字符串是
ac、ad、ae…az
ba、bb、bc…bz
ca、cb、cc、cd总数是 2 + 24 + 26 + 4 = 56
二、分析题目
- 字典序在ab、ce之间的且长度为2的字符串如何求呢?
将字母看作是二十六进制的
c - a = 2
e - b = 3
3*26^0 + 2*26^1 - 1
(-1是因为结果包含ce) =54- 字典序在ab、ce之间的且长度为1的字符串如何求呢?
c - a = 2
2*26^0
=2- 得出如何求字典序在s1、s2之间的不同长度的字符串的数目
- 如何求字典序在s1、s2之间的且长度为len(len > str.lenth())的字符串的?
将s1和s2补位,补位至其长度为 len
s1用'a'
补位
s2用'z' + 1
补位
三、解决方法
- 将s1、s2补位至 len2(因为len2 > len1),s1用 ‘a’ 补位,s2用 ‘z’ + 1 补位
- 将新的s1、s2的每一位相减(s2 - s1),保存到一个数组(array)中
- 计算每个长度的字符串数目
从长度len1(i = len1-1)开始 ------------ 长度len2(i = len2-1)结束
对于一个长度为 i + 1的字符串,用 j 遍历array[0] ----> array[i];此长度的字符串数目为 array[j] * 26 ^ (i - j)- 不同长度字符串数目的加和即为最后的结果
- 最后 - 1,因为包含 (s2)
import java.util.*;
public class Main{