Tensorboard --logdir=logs 无法显示图像的处理办法,亲测有效!

在使用Tensorboard时遇到"No dashboards are active for the current data set."错误,尝试了多种方法如更换端口、更新版本、修改路径等未果。最终通过指定全局路径"D:pythonProject orch learninglogs"(使用双引号且前加)解决了问题,对于只索引logs目录的情况,需确保路径正确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

No dashboards are active for the current data set.
Probable causes:

You haven’t written any data to your event files.
TensorBoard can’t find your event files.
If you’re new to using TensorBoard, and want to find out how to add data and set up your event files, check out the README and perhaps the TensorBoard tutorial.
If you think TensorBoard is configured properly, please see the section of the README devoted to missing data problems and consider filing an issue on GitHub.

Last reload: Apr 18, 2021, 2:56:06 PM
Log directory: \logs
问题描述:在这里插入图片描述
参照好多博客都没解决这个问题(查看端口,更新tensorboard版本,把=换成“”,把6006换成其他端口,更改路径都试过,对我来说都没解决)

解决办法:

tensorboard --logdir="torch learning\l
# 执行预览命令(GPU设为0) python run_train.py --view='train' --gpu='0' # 预期结果:弹出图像窗口显示增强后的训练样本 # === 步骤4:启动训练 === # 试运行(观察是否报错) python run_train.py --gpu='0' # 正式训练(后台运行) # Linux/macOS: nohup python run_train.py --gpu='0' > train.log 2>&1 & # Windows: start /B python run_train.py --gpu="0" > train.log 2>&1 # === 步骤5:监控训练 === # 监控显存使用(每1秒刷新) # Linux/macOS: watch -n 1 nvidia-smi # Windows: # 创建 watch_gpu.bat 文件,内容: :loop nvidia-smi timeout /t 1 > nul cls goto loop # 查看训练日志(实时更新) # Linux/macOS: tail -f train.log # Windows: # 创建 tail_log.bat 文件,内容: @echo off :loop tail -n 10 train.log timeout /t 1 > nul cls goto loop # === 步骤6:TensorBoard可视化 === # 1. 新开终端窗口 # 2. 进入项目目录 cd /path/to/hovernet_project # 3. 启动TensorBoard tensorboard --logdir=logs --port=6006 # 4. 浏览器访问 # 打开 Chrome/Firefox 输入: http://localhost:6006 这一部分我不理解的原因: 1)python run_train.py --view='train' --gpu='0'这不就是直接开始训练了吗,怎么又说是预览?“# 预期结果:弹出图像窗口显示增强后的训练样本”这句话什么意思? 2)start /B python run_train.py --gpu="0" > train.log 2>&1这条代码我看不懂 3)我现在很不理解,我已经开始训练了,那么在训练结束前,我怎么输入监控训练部分的指令?# 创建 watch_gpu.bat 文件,内容: :loop nvidia-smi timeout /t 1 > nul cls goto loop # 查看训练日志(实时更新) # Linux/macOS: tail -f train.log # Windows: # 创建 tail_log.bat 文件,内容: @echo off :loop tail -n 10 train.log timeout /t 1 > nul cls goto loop # === 步骤6:TensorBoard可视化 === # 1. 新开终端窗口 # 2. 进入项目目录 cd /path/to/hovernet_project # 3. 启动TensorBoard tensorboard --logdir=logs --port=6006 # 4. 浏览器访问 # 打开 Chrome/Firefox 输入: http://localhost:6006 这部分怎么实现
最新发布
08-15
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值