解析sql语句工具

本文介绍了用于解析SQL语句的工具,重点展示了如何解析出语法、库表和条件。文中通过实例,详细讲解了如何在Maven项目中引用及使用解析类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明:解解析sql语句工具析工具可以解析出sql语句 语法、库表、条件 下面示例只是解析 库表的示例,其他解析需要再分析解析规范

使用:

一、mvaen引用

<!--解析sql语句使用jar包 start-->
<dependency>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-exec</artifactId>
 <version>2.0.0-SNAPSHOT</version>
 <exclusions>
 <exclusion>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-common</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.antlr</groupId>
 <artifactId>antlr-runtime</artifactId>
 <version>3.4</version>
</dependency>
<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>2.2.0</version>
</dependency>
<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-mapreduce-client-core</artifactId>
 <version>2.2.0</version>
</dependency>
 <!--解析sql语句使用jar包 end-->

二、引入解析类

import java.io.IOException;
import java.util.HashSet;
import java.util.Set;
import java.util.Stack;

import com.alibaba.fastjson.JSONObject;
import org.antlr.runtime.ANTLRStringStream;
import org.antlr.runtime.CharStream;
import org.antlr.runtime.RecognitionException;
import org.antlr.runtime.TokenRewriteStream;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hive.conf.HiveConf;
import org.apache.hadoop.hive.ql.parse.*;

/**
 * 目的:获取AST中的表,列,以及对其所做的操作,如SELECT,INSERT
 * 重点:获取SELECT操作中的表和列的相关操作。其他操作这判断到表级别。
 * 实现思路:对AST深度优先遍历,遇到操作的token则判断当前的操作,
 * 遇到TOK_TAB或TOK_TABREF或TOK_ALTERTABLE或者则判断出当前操作的表,遇到子句则压栈当前处理,处理子句。
 * 子句处理完,栈弹出。
 */
public class HiveParseUtil {
    private  final Log log = LogFactory.getLog(HiveParseUtil.class);

    private  final String UNKNOWN = "UNKNOWN";
    private  String defaultDbName;
    private  Set<String> tables = new HashSet<String>();
    private  Stack<String> tableNameStack = new Stack<String>();
    private  Stack<Oper> operStack = new Stack<Oper>();
    private  String nowQueryTable = "";//定义及处理不清晰,修改为query或from节点对应的table集合或许好点。目前正在查询处理的表可能不止一个。
    private  Oper oper;
    private  boolean joinClause = false;

    private enum Oper {
        SELECT, INSERT, DROP, TRUNCATE, LOAD, CREATE, ALTER, USE
    }

    public  Set<String> parseIteral(ASTNode ast) {
        Set<String> set = new HashSet<String>();//当前查询所对应到的表集合
        prepareToParseCurrentNodeAndChilds(ast);
        set.addAll(parseChildNodes(ast));
        set.addAll(parseCurrentNode(ast, set));
        endParseCurrentNode(ast);
        return set;
    }

    private  void endParseCurrentNode(ASTNode ast) {
        if (ast.getToken() != null) {
            switch (ast.getToken().getType()) {//join 从句结束,跳出join
                case HiveParser.TOK_RIGHTOUTERJOIN:
                case HiveParser.TOK_LEFTOUTERJOIN:
                case HiveParser.TOK_JOIN:
                    joinClause = false;
                    break;
                case HiveParser.TOK_QUERY:
                case HiveParser.TOK_INSERT:
                case HiveParser.TOK_SELECT:
                    nowQueryTable = tableNameStack.pop();
                    oper = operStack.pop();
                    break;
            }
        }
    }

    private  Set<String> parseCurrentNode(ASTNode ast, Set<String> set) {
        if (ast.getToken() != null) {
            switch (ast.getToken().getType()) {
                case HiveParser.TOK_TABLE_PARTITION:
                    if (ast.getChildCount() != 2) {
                        String table = BaseSemanticAnalyzer
                                .getUnescapedName((ASTNode) ast.getChild(0));
                        if (oper == Oper.SELECT) {
                            nowQueryTable = table;
                        }
                        tables.add(table + "\t" + oper);
                    }
                    break;

                case HiveParser.TOK_TAB:// outputTable
                    String tableTab = BaseSemanticAnalyzer
                            .getUnescapedName((ASTNode) ast.getChild(0));
                    if (oper == Oper.SELECT) {
                        nowQueryTable = tableTab;
                    }
                    tables.add(tableTab + "\t" + oper);
                    break;
                case HiveParser.TOK_TABREF:// inputTable
                    ASTNode tabTree = (ASTNode) ast.getChild(0);
                    String tableName = (tabTree.getChildCount() == 1) ? BaseSemanticAnalyzer
                            .getUnescapedName((AS
1、支持绝大部分数据库,括 大型数据库Oracle,Sybase(SQL AnyWhere),DB2,MS_SQL 中型数据库MS_Access,MySQL 桌面型数据库Paradox,DBF系列数据库,MS_Execl,Text 其他支持SQL 92标准的数据库 2、数据库的连接采用ADO连接,因此无需安装和卸载 3、支持SQL查询语句绝大部分语法 3.1 选择字段 3.1.1 Select [All] [Distinct]; 3.1.2 特殊语法,记录条数限定Top(MS_SQL),Rownum(Oracle), Limit(MySQL),Set RowCount(Sybase)) 3.1.3 字段表达式或者计算字段 3.2 选择表 (From) 3.3 条件筛选 (Where) 3.4 分组 (Group By) 3.5 组内条件 (Having) 3.6 排序 (Order By) 3.7 数据表的内连接、外连接 3.7.1 SQL 92 标准:Inner Join、Left Join、Right Join、Full Join, 3.7.2 特殊语法:*=、=*、*=*(MS_SQL,Sybase),(+)(Oracle) 3.8 联合 (Union [All],Minus,Intersect) 3.9 字段别名,数据表别名 3.10 SQL子查询表,内嵌SQL子句 4、粘贴字段、系统函数 5、SQL查询语句反向分析, 无论多么复杂的语句,都能分析得出来 括上面提到的所有SQL语法 6、SQL文件拖放,然后反向分析 7、数据库视图创建和重建(目前仅支持Oracle,Sybase,MS_SQL) 8、附加Delphi 5和Delphi 6的控件,支持Delphi 5,6开发环境 9、SQL语句智能换行 10、其他功能 10.1 SQL文件保存、打开 10.2 支持多个数据库连接 10.3 SQL语句关键词高亮度显示 10.4 简单SQL查询语句转换为Delete,Update,Insert语句
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值