
计算机视觉
搬砖张姐
踏入视觉算法这一行业,经历过酸甜苦辣,只管尽自己最大的努力,一切都是最好的安排。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【无标题】图像处理分析与机器学习第四章和第五章的阅读摘抄
灰度级变换, 使对比度增强的灰度级变换一般可以利用直方图均衡化,增强了靠近直方图极大值附近的亮度的对比度,减小了极小值附近的对比度 几何变换 像素坐标变换 亮度插值:输出图像光栅上每个像素的数值可以用一些相邻的非整数采样点的亮度插值获得 最近邻插值,线性插值,双三次插值 局部预处理 滤波:输入图像中一个像素的小邻域来产生输出图像中新的亮度数值的方法,(filtration/filtering) 平滑smoothing 抑制噪声或小的波动,也会模糊所有的含有图像重要信息的明显边缘。 梯度算子:基于图像函数的原创 2022-02-08 16:04:24 · 1844 阅读 · 0 评论 -
xilinx ssdpedestrian 部署过程
1、cf_ssdpedestrian_coco_360_640_0.97_5.9G 2、Caffe_Xilinx 编译 1. 安装依赖 # apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev...原创 2020-01-03 19:00:38 · 387 阅读 · 0 评论 -
7月
lr_policy 设置策略调整 fixed: 保持base_lr不变 step: 阶梯衰减 base_lr * gamma ^ (floor(iter / step)) 【需要gamma 和 step】 exp 指数衰减 base_lr * gamma ^ iter 【需要gamma】 inv 倒数衰减 base_lr * (1 + gamma * iter) ...原创 2019-07-27 16:55:37 · 188 阅读 · 0 评论 -
AI快车道
2019.5.26 paddlepaddle AI快车道喻友平 生态部总经理 baidu Broad unit实现定咖啡的过程, 人脸检测 人脸抽取 车牌识别 车牌定位车牌分类车牌识别 目标检测单阶段和双阶段 基础网络->rpn->iou-> hrnet控制感受野,提高目标检测的召回率, detectnet 上采样恢复小目标信息, 低分辨率语义信息, resnet101 Tr...原创 2019-06-06 14:41:11 · 344 阅读 · 0 评论 -
检测
5、 方法选择: ========DPM========= 使用传统的slider window的方法 计算量非常大 ========OverFeat==== 改进了Alex-net,并用图像缩放和滑窗方法在test数据集上测试网络;提出了一种图像定位的方法;最后通过一个卷积网络来同时进行分类,定位和检测三个计算机视觉任务,并在ILSVRC2013中获得了很好的结果。 ========SPPNet...转载 2019-06-06 14:39:03 · 591 阅读 · 1 评论 -
交通标志检测
类型 对应的编号 停车场 1 Parking 停车让行 2 stop at intersection 右侧行驶 3 keep right 向左和向右转弯 4 turn left or right 大客车通行 5 Large vehicles pass 左侧行驶 6 keep left 慢行 7 slow down 机动车直行和右...原创 2019-06-06 14:36:13 · 5656 阅读 · 0 评论 -
DriverDrowsiness_Detection fatigue
思路:多任务检测与跟踪 检测人眼,人手,嘴,检测电话,检测人的行为,检测抽烟,检测驾驶员不在位置上,检测长时间不目测前方, 安全带可以通过can得到,TejasNaikk思路很好,但运行不了,AnirudhGP直接用的opencv的检测方法,太low,数据集可以用;http://parnec.nuaa.edu.cn/xtan/data/datasets/dataset_B_Eye_Images.r...原创 2019-01-25 11:36:43 · 2256 阅读 · 2 评论 -
TensorFlow 实战Google 深度学习框架 郑泽宇
研究ssd网络的层结构,该怎样修改,能提升准确度,怎样看结果,各个loss代表的意义, alphago原理: ai+教育 ai+媒体 ai+医学 ai+配送 ai+农业 caicloud.io tensorboard 可视化,tensorflow高层封装,带gpu的分布式tensorflow使用方法,tensorflow输入数据处理流程, cv,nlp,sr,人机博弈 protocol buf...原创 2019-01-25 11:18:54 · 670 阅读 · 0 评论 -
mistake
[1]: https://answers.launchpad.net/ubuntu/+source/software-center/+question/478121 [2]: https://blog.csdn.net/qq_29573053/article/details/71515714 [3]: https://github.com/NVIDIA/nvidia-docker/is...原创 2019-01-25 11:10:30 · 695 阅读 · 0 评论 -
Jetson TX2 install tensorflow
jetson tx2 [Jetson Download Center ][2] [ how to install TensorFlow for Jetson TX2][3] DriveNet、SignNet、LaneNet、OpenRoadNet和WaitNet [1]: https://stackoverflow.com/questions/11522755/opencv-via-py...原创 2019-01-25 11:07:24 · 485 阅读 · 1 评论 -
摄像头设备号问题
for I in /sys/class/video4linux/*; do cat $I/name; done VIDIOC_S_FMT:failed:Device or resource busy VIDIOC_S_PARM:failed:Device or resource busy 一个摄像头为什么两个设备号?原创 2019-01-25 10:58:53 · 1639 阅读 · 0 评论 -
读机器学习教程
斯坦福大学2014机器学习教程个人笔记 10、机器学习诊断法 判断过拟合和欠拟合 将数据分成训练集和测试集,70%,30%, 计算误差: 线性回归模型:利用测试集数据计算代价函数 逻辑回归模型:除了利用测试集,计算代价函数外, 模型的选择和交叉验证集 训练集误差和交叉验证集误差近似时:偏差/欠拟合 交叉验证集误差远大于训练集误差时:方差/过拟合 正则化和偏差、方差 lamda的值通常是0-10之...原创 2019-01-25 10:55:01 · 206 阅读 · 0 评论 -
安装Jetpack3.3出现的问题
JetPack 3.3, TensorFlow1.10 cuDNN v7.1.5 CUDA 9.0 Python 2.7 and Python 3.5 TensorRT 4.0 GA 1、bash: ./install.sh;Permission denied chmod +x install.sh 2、Installing Jupyter with pip As an existin...原创 2019-01-25 10:53:44 · 1255 阅读 · 0 评论 -
torch7+ubuntu16.04+cuda8.0+cudnn5+hdf5+matlab2016安装
折腾了好几天,踩了好多坑,终于装好,整理一下,以备后续再用。参考网址https://www.cnblogs.com/darkknightzh/p/5668471.htmlhttps://jingyan.baidu.com/article/cbcede077e1ebe02f40b4d1e.htmlDeep Learning Frameworks | NVIDIA Developer,Torch su...原创 2018-02-28 17:18:31 · 539 阅读 · 1 评论 -
把3行2列的矩阵转换成6行1列
A=[1 2;3 4;4 5]; for i=1:3 B(2*i-1,1)=A(i,1); B(2*i,1)=A(i,2); end原创 2017-03-29 17:58:37 · 3000 阅读 · 0 评论