【数据挖掘】推荐系统(二):基于内容的推荐

本文介绍了基于内容的推荐系统的基本原理,强调了其在数据不足时的优势和缺乏多样性、新用户建议的缺点。通过实例展示了如何计算项目相似性和实现推荐。同时提及混合推荐系统,结合多种模型以提供更可靠和个性化的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

五、基于内容的系统

5.1 基本原理

        基于内容的系统根据用户偏好和配置文件生成建议。他们尝试将用户与他们以前喜欢的项目相匹配。项目之间的相似程度通常根据用户喜欢的项目的属性来确定。与大多数利用目标用户和其他用户之间的评级的协作过滤模型不同,基于内容的模型侧重于目标用户自己提供的评级。从本质上讲,基于内容的方法利用不同的数据源来生成建议。

        基于内容的系统的最简单形式需要以下数据源(这些要求可能会根据您尝试构建的系统的复杂性而增加):

  1. 项目级数据源 — 您需要与项目属性关联的强大数据源。对于我们的场景,我们有书价、num_pages、published_year等。您了解有关该项目的信息越多,它对您的系统就越有利。
  2. 用户级数据源 - 您需要根据您为其提供建议的项目提供某种用户反馈。此级别的反馈可以是隐式的,也可以是显式的。在我们的示例数据中,我们针对用户对他们阅读过的图书进行评分。您可以跟踪的用户反馈越多,对您的系统就越有利。

5.2 基于内容推荐的优缺点 

5.2.1 优势

当可用的评级数据量不足时,基于内容的模型对于推荐项目最有利。这是因为用户可能已对具有类似属性的其他项目进行了评级。因此,即

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值