
AI数学原理
文章平均质量分 92
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
联合概率:定义、公式和示例
概率是指事件发生的可能性。但是当涉及两个变量时,您可能具有联合概率。这是一个统计度量值,可以告诉您两个独立的事件是否可能同时发生。对于使用它来确定两组变量之间关系的统计学家来说,它是一个重要的指标原创 2025-02-16 23:07:21 · 1249 阅读 · 0 评论 -
关联传播和 Python 和 Scikit-learn 实现
假设您有一个数据集,其中各个样本之间存在关系,您的目标是识别数据集中的相关样本组。聚类是无监督机器学习算法的一部分,可能是要走的路。但是,当您并不真正知道聚类的数量时,应该应用哪种聚类算法呢?原创 2025-01-27 12:46:46 · 1615 阅读 · 0 评论 -
微积分直觉:隐含微分
取 S 的导数意味着考虑这两个变量的微小变化,一些微小的变化 dy 到 y,一些微小的变化 dx 到 x(不一定让你留在圆圈里,它可以在任何方向)。方程的左侧是时间 (y(t)² + x(t)²) 的函数,它恰好等于一个常数,这意味着该值不会随着时间的流逝而改变,但仍被写为依赖于时间的表达式。方程的左侧是时间 (y(t)² + x(t)²) 的函数,它恰好等于一个常数,这意味着该值不会随着时间的流逝而改变,但仍被写为依赖于时间的表达式。x(t)² 的导数是 x(t) 的 2 乘以 x 的导数(链式法则)。原创 2024-09-07 09:36:23 · 1416 阅读 · 0 评论 -
如何计算算法效率?
你有没有想过是什么让某些算法比其他算法更快、更高效?这一切都归结为两个关键因素:时间和空间复杂性。将时间复杂度视为时钟滴答作响,根据其输入的大小来衡量算法完成所需的时间。另一方面,空间复杂性就像一个存储单元,随着输入大小的增长,跟踪算法需要多少内存。为了理解这一点,我们使用了 Big O 表示法——一种描述算法增长率上限的便捷方法。让我们深入了解计算算法效率的迷人世界!原创 2024-07-17 14:54:03 · 2123 阅读 · 0 评论 -
【信息熵理论-01】最大熵的分布
我觉得用最大熵来获取概率分布的方法很给力。您采用一些已知或约束,然后在这些条件下最大化信息熵,瞧!你有一个独特的概率分布。很酷的是,这些最大熵分布非常常见,因此这是一种重新推导我们日常遇到的许多分布的巧妙方法。对我来说,仅此一点就值得付出代价。但从信息论的角度来看,这些将是偏差最小的先验分布(我们最大化我们的无知),因此随后的贝叶斯定理实验将 最大化获得的信息。此外,自然界中发现的许多物理模式都倾向于最大熵概率分布。因此,即使作为理解世界的一种方式,最大熵也是一个非常有用且深入的工具。原创 2024-05-07 14:34:16 · 3212 阅读 · 0 评论 -
为什么要学习数学/科学史?
哈代的经典著作《数学家的道歉》,他在书中为自己选择的数学职业辩护,他坦诚了自己一生贡献之微不足道。事实是,哈代没什么可道歉的。哈代是一位真正的顶级数学家,完全有资格获得他选择的头衔,并且以伯乐之能,挖掘了人类金矿哈马努金。而数学是人类的史诗,每个数学家只要成了一个音符已经足够。原创 2024-04-04 13:28:42 · 2999 阅读 · 0 评论 -
余集和拉格朗日定理
数学家总是痴迷于根据乍一看似乎完全无关的事实/观察来形成概括。为什么?原因很简单,如果我们知道相同的骨架是不同数学结构的基础,那么我们就可以只详细研究一种结构,并确信其他结构也会得到类似的结果。这不是节省了很多时间吗!原创 2024-04-04 13:04:41 · 3176 阅读 · 0 评论 -
图像理论:适应性形态重建
在数字图像处理领域,自适应形态重建(Adaptive Morphological Reconstruction- AMR)成为一种强大的技术,可以完善和增强形态操作的能力,以适应图像的独特特征。本文深入探讨了抗微生物药物耐药性的基本概念、其机制、应用以及它对从医学成像到遥感等各个领域的深远影响。原创 2024-03-13 09:39:06 · 3085 阅读 · 0 评论 -
奠定基础:用于机器学习的微积分、数学和线性代数
坚实的数学和线性代数基础对于任何潜入机器学习的人来说都是必不可少的。了解用于优化的微积分、用于处理数据不确定性的概率和统计以及用于高效数据操作的线性代数是释放机器学习算法全部潜力的关键。Python 凭借其丰富的库生态系统,提供了一个强大的平台,可以在机器学习的背景下实现和试验这些数学概念。祝您学习愉快!原创 2024-01-30 16:29:59 · 2902 阅读 · 0 评论