
概率模型
文章平均质量分 92
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[概率论基本概念4]什么是无偏估计
对于无偏和有偏估计,需要了解其叙事背景,是指整体和抽样得关系,也就是说整体得叙事是从理论角度的,而估计器原理是从实践角度说事;为了表明概率理论(不可操作)和统计学(可操作)的实践的一致性,于是提出有偏和无偏的观点。原创 2025-06-03 15:06:02 · 1682 阅读 · 0 评论 -
【概率论基本概念02】最大似然估计原理
最大似然性估计到底是啥?我们从总体随机抽样中如何得到总体分布的参数?有个“独立同分布”的意味着什么?本文将给出详细叙述。原创 2025-05-25 16:38:27 · 1033 阅读 · 0 评论 -
【概率论基本概念01】点估计
关于概率和统计的学习,需要从根本上、原始概念中一点一点积累,这些基本概念的头绪特别多,一次性交待它们的面有困难,我们只能从点上入手,将点与点的关系连成面,最后完成系统学习的目的,这是一个长期任务。原创 2025-05-24 10:11:54 · 1153 阅读 · 0 评论 -
条件期望窥探
条件期望是概率论的高级理论部分,很抽象难懂,而一旦学会使用,那么对于一些高级的贝叶斯理论模型就能够灵活实现。本篇是从诸多国外教材中整理汇编的论文。原创 2025-01-06 20:24:56 · 146 阅读 · 0 评论 -
ML 系列:第 30 节 — 联合分布、 边际分布和条件分布
在深入研究协方差和相关性的复杂性之前,首先了解联合分布、边际分布和条件分布的概念很重要。这些基本概念为完全掌握多个随机变量之间的关系和交互提供了必要的背景知识。通过理解这些基本概念,我们可以更好地解释和分析机器学习和统计分析中变量之间的协方差和相关性。原创 2024-11-24 10:15:48 · 1610 阅读 · 0 评论 -
ML 系列: 第 29节 — 连续概率分布 (拉普拉斯分布)
拉普拉斯分布,也称为双指数分布,是一种概率分布,在统计学中经常用于对不对称数据进行建模。它以法国数学家皮埃尔-西蒙·拉普拉斯 (Pierre-Simon Laplace) 的名字命名,他在 19 世纪初首次引入了它。原创 2024-11-23 11:45:53 · 1871 阅读 · 0 评论 -
ML 系列: 第 28 节 — 连续概率分布 (指数分布)
指数分布是连续概率分布领域的基石,在各个领域都有广泛的应用,特别是在对连续事件之间经过的时间进行建模时。让我们深入研究它的数学基础,探索它的定义、关键参数和基本属性。原创 2024-11-23 10:55:36 · 879 阅读 · 0 评论 -
ML 系列:第 27 节 - 连续概率分布(Gamma分布)
在这篇博文(第 27 节)中,我们将探讨Gamma 分布,这是一种用途广泛且应用广泛的连续概率分布。了解 Gamma 分布对于贝叶斯统计至关重要。这篇文章将介绍数学定义、关键属性、实际应用以及如何使用 Python 实现和可视化 Gamma 分布。原创 2024-11-21 22:15:21 · 2308 阅读 · 0 评论 -
ML 系列:第 26 节 - 连续概率分布(均匀分布)
均匀分布是一种概率分布,其中定义范围内的每个值都有相同的发生概率。换句话说,所有可能的结果都有相同的概率。这种分布的特点是概率密度函数平坦或恒定。原创 2024-11-21 11:45:56 · 894 阅读 · 0 评论 -
ML 系列: 第 22 节 — 离散概率分布 (Multinoulli Distribution)
多重努利分布,也称为分类分布或伯努利分布对多个类别的泛化,是在随机变量上定义的概率分布函数,该变量可以采用k 个不同值之一。每个值代表不同的类别或结果,与每个类别关联的概率之和必须为1。原创 2024-11-09 16:24:19 · 1136 阅读 · 0 评论 -
ML 系列:第 21 节 — 离散概率分布(二项分布)
二项分布描述了在固定数量的独立伯努利试验中一定数量的成功的概率,其中每个试验只有两种可能的结果(通常标记为成功和失败)。原创 2024-11-09 16:11:35 · 1141 阅读 · 0 评论 -
ML 系列:机器学习和深度学习的深层次总结( 20)— 离散概率分布 (Bernoulli 分布)
离散概率分布,最早的杰出任务是贝努力,而贝努力分布是最早的离散概率模型,至今依然是重要的概率理论,在物理学的热力学、量子理论均有巨大意义。原创 2024-11-06 21:22:21 · 1276 阅读 · 0 评论 -
ML 系列:机器学习和深度学习的深层次总结( 19)— PMF、PDF、平均值、方差、标准差
在概率和统计学中,了解结果是如何量化的至关重要。概率质量函数 (PMF) 和概率密度函数 (PDF)是实现此目的的基本工具,每个函数都提供不同类型的数据:离散和连续数据。原创 2024-11-06 21:12:53 · 1774 阅读 · 0 评论 -
Z 检验和 T 检验之间的区别
在本文中,我们遵循分步过程来了解假设检验、1 类错误、2 类错误、显著性水平、临界值、p 值、非定向假设、方向假设、z 检验和 t 检验的基础知识。最后,我们为冠状病毒案例研究实施了双样本 z 检验。因此,您将在本文中清楚地了解 t 检验与 z 检验。原创 2024-10-31 22:07:13 · 1881 阅读 · 0 评论 -
使用 Python 理解置信区间
每当我们解决统计问题时,我们都会关心总体参数的估计,但通常情况下,计算总体参数几乎是不可能的。我们所做的是从总体中随机抽取样本,并计算样本统计数据,期望近似总体参数。但我们如何知道样本是否是总体的真实代表,或者这些样本统计数据与总体参数的偏差有多大?这就是置信区间发挥作用的地方。那么,这些区间是什么?置信区间是样本统计数据上下的一系列值,或者我们也可以将其定义为样本统计数据周围的一系列值包含真实总体参数的概率。原创 2024-10-29 22:19:43 · 1906 阅读 · 0 评论 -
推断统计——抽样分布、中心极限定理和置信区间
统计学领域包括描述和建模变异性的方法以及在存在变异性时做出决策的方法。在推论统计中,我们通常希望对某个总体做出决策。总体是指我们希望得出结论或做出决策的宇宙中所有元素的测量值集合。原创 2024-10-29 21:54:01 · 1385 阅读 · 0 评论 -
ML 系列:第 18 部 - 高级概率论:条件概率、随机变量和概率分布
条件概率是极其重要的概率概念,它是因果关系的数学表述,也是随机过程的主要核心内容。本文将就条件概率的相关概念进行叙述。原创 2024-10-28 20:36:18 · 1695 阅读 · 0 评论