- 博客(5)
- 收藏
- 关注
原创 LSTM 网络详解:RNN 的“记忆大师”进阶版(含结构图+直观类比)
LSTM 是一种具有“记忆管理机制”的循环神经网络,适合处理长期依赖的问题。它解决了 RNN“健忘”的缺陷,广泛应用于需要理解上下文的任务中。
2025-06-03 20:01:59
900
原创 什么是 RNN?一文带你看懂循环神经网络
摘要:RNN(循环神经网络)是一种擅长处理序列数据的神经网络模型。与传统神经网络不同,RNN能够通过隐藏状态(h_t)保留历史信息,使当前输出不仅取决于当前输入,还受过去状态影响。这种结构使其适合处理语言、音频、股票等具有时序特征的数据。RNN的优势在于参数共享、处理变长序列和捕捉上下文语义,但也存在梯度消失、长期依赖等缺陷。典型应用包括文本生成、情感分析、机器翻译等任务。虽然计算效率较低,但RNN仍是处理序列数据的基础模型。
2025-06-03 19:57:30
1110
原创 PPO学习与应用笔记(二):PPO 算法实现 :原理 + 网络结构 + 代码讲解
PPO(Proximal Policy Optimization)是一种强化学习算法,通过限制策略更新的幅度来提高训练稳定性。其核心思想是通过剪切(clip)策略优化目标,防止策略更新过大。
2025-05-15 19:29:08
1540
原创 PPO学习与应用笔记(一):环境构建 —— 航天器交会建模
本文介绍了如何构建一个用于深度强化学习训练的航天器交会对接环境,重点模拟服务星与被服务星在低轨轨道中的相对运动。环境基于Clohessy-Wiltshire(CW)方程进行动力学建模,状态空间包括相对位置和速度,动作空间为脉冲速度变化量。环境设计包括状态转移机制、奖励函数和终止条件,奖励函数综合考虑距离改善、速度方向和动作惩罚,鼓励节能且快速接近目标。核心代码结构展示了环境类的初始化、状态转移和奖励计算。该环境为后续基于PPO算法的强化学习训练提供了基础。
2025-05-12 09:21:35
982
1
原创 # [特殊字符] 用神经网络预测卫星轨道状态 | Python实现+完整代码
本项目基于二体轨道动力学,将卫星的轨道状态数据(位置 + 速度)作为监督学习目标,利用全连接前馈神经网络进行回归预测。通过训练模型,我们可以仅根据时间快速预测卫星在某一时刻的状态。对轨道力学与人工智能结合感兴趣的研究者;想了解多层感知机(MLP)训练过程的初学者;希望复现经典神经网络回归任务的小伙伴。本项目展示了一个将传统轨道动力学模型与神经网络融合的实践案例,说明了神经网络在轨道预测等连续函数拟合问题中的强大能力。
2025-05-05 22:26:43
810
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人