湿件上的导电聚合物神经网络发展
1. 聚合物神经网络简介
近年来,各种有机突触设备被报道,它们具有不同的开关机制和特殊优势,例如低功耗和三维构建能力。其中,掺杂聚(苯乙烯磺酸盐)阴离子的导电聚合物聚(3,4 - 乙撑二氧噻吩)(PEDOT:PSS)因其诸多优点而备受关注,包括高导电性、高热电转换效率、高化学敏感性与生物适应性、透明性、柔韧性以及高环境耐久性。它在基本非易失性突触及其二维阵列中的应用也已得到证实。
然而,和二维忆阻器交叉开关一样,它们并非无空间限制的介质,因为输入和输出之间的所有突触都是预先放置的。虽然线状导电聚合物的生长已有报道,并且其在信息处理方面的潜在应用也被提及,但具体应用尚未得到证实。
在将聚合物线具体应用于人工神经网络(ANN)时,生长过程与人工突触的学习过程直接相关。首先展示了一个由线性可分数据集(布尔函数)训练的简单感知器,它在由分子突触介质及其电子控制器组成的分子 - 电子混合ANN系统中实现。接着,展示了在该系统中实现的执行无监督数据编码(特征提取)任务的自动编码器。在自动编码器中,3×3(9 像素)的二进制字母成功压缩为 3 位代码。与二维忆阻器交叉开关设备不同,学习前不存在聚合物线,通过学习过程,在电极(对应人工神经元)之间形成了必要的 PEDOT:PSS 线。因此,与具有全连接网络结构的计算机模拟自动编码器中可贡献的突触数量相比,形成的突触(PEDOT:PSS 线)数量较少。
由于权重更新时的非线性和可变性,生长不良的聚合物会被更好的聚合物替代,最终形成了基于自然选择的容错突触设备。从原理上讲,将聚合物二维突触介质扩展到三维是可行的,所提出的方法为在二维芯片上实现三维神经网络时的“缺失一维”问题提供了解决方案。