伊藤随机微积分:随机微分方程及其数值解法
1. 随机微分方程概述
随机微分方程在描述具有随机因素的动态系统中具有重要作用。我们将重点关注朗之万方程,它是描述布朗粒子速度的模型,类似于在常微分方程研究中简谐运动的作用,能以不过于复杂的方式阐释随机微分方程的诸多方面。
1.1 利用乘积法则求解的示例
1.1.1 示例一
考虑随机微分方程:
[dX(t) = [t + B^2(t)] dt + 2tB(t) dB(t), \quad X(0) = X_0]
通过巧妙运用乘积法则,我们发现:
[dX(t) = B^2(t) dt + t[2B(t) dB(t) + dt] = B^2(t) dt + t d[B^2(t)] = d[tB^2(t)]]
对两边进行积分,可得该方程的解为:
[X(t) = tB^2(t) + X_0]
1.1.2 示例二
对于随机微分方程:
[dX(t) = \frac{b - X(t)}{1 - t} dt + dB(t), \quad 0 \leq t < 1, \quad X(0) = X_0]
首先将其改写为:
[\frac{d[b - X(t)]}{1 - t} + \frac{b - X(t)}{(1 - t)^2} dt = -\frac{dB(t)}{1 - t}]
逆向运用乘积法则可得:
[d\left[\frac{b - X(t)}{1 - t}\right] = -\frac{dB(t)}{1 - t}]
从 0 到 t 对两边积分:
[\f