一个集成模型(f)在未知数据集(D)上的泛化误差E(f;D),由方差(var),偏差(bais)和噪声(ε)共同决定。
E(f;D)=bias2(x)+var(x)+ϵ2E(f;D)=bias^2(x)+var(x)+\epsilon^2E(f;D)=
机器学习:算法模型的偏差 vs 方差
最新推荐文章于 2022-11-17 15:03:14 发布
一个集成模型(f)在未知数据集(D)上的泛化误差E(f;D),由方差(var),偏差(bais)和噪声(ε)共同决定。
E(f;D)=bias2(x)+var(x)+ϵ2E(f;D)=bias^2(x)+var(x)+\epsilon^2E(f;D)=