基于二进制矩阵编码的遗传算法调度
1. 引言
调度是确定执行某些任务(作业、活动)的最优计划的问题。在众多领域中,调度对于规划工作流程至关重要。一个最优的调度方案能够帮助人们更有效地利用可用资源,减少执行时间。然而,构建最优或接近最优的调度方案并非易事。在项目管理中,通常使用关键路径法来制定项目执行计划,它可以估算完成项目所需的最短时间。但在实际操作中,调度方案必须考虑可用资源存量和资源需求,此外,不同领域和特定条件下还可能出现其他特殊要求和约束,这使得问题变得极为复杂,几乎无法靠人力解决。
人工智能方法可以通过编程来解决这个问题。虽然已经提出了各种解决该问题的算法,但由于问题的复杂性,仍然需要开发能够解决大规模实际问题的新有效方法。
2. 问题描述
调度问题有多种变体,其中最常见的是资源受限项目调度问题(RCPSP),它出现在项目管理领域。其他调度问题,如作业车间或开放车间调度问题,可以看作是它的特殊情况。
RCPSP将项目视为一组作业(或活动),每个作业都需要一定的资源,而这些资源的数量是有限的(例如员工)。最终的调度方案应尽可能缩短时间,同时不能违反优先级和资源约束。该问题可以正式定义为一个优化问题:
[
\begin{align }
f_n &\to \min\
\text{subject to } f_i &\leq f_j - d_j \quad \forall (i, j) \in A\
f_1 &= 0\
\sum_{i \in s_t} r_{ik} &\leq a_k \quad \forall k = 1, \ld