二维曲线雅可比矩阵 ℓ - 挠子群生成元研究
1. J(ℓ, q, k, τk) - 雅可比矩阵定义
考虑定义在有限域 $IF_q$ 上的二维曲线 $C$ 的雅可比矩阵 $J_C$,若满足以下条件,则称该雅可比矩阵为 $J(ℓ, q, k, τk)$ - 雅可比矩阵,记为 $J_C \in J(ℓ, q, k, τk)$:
1. $\ell$ 是一个奇素数,它能整除 $J_C$ 上 $IF_q$ - 有理点的数量,且 $\ell$ 既不整除 $q$ 也不整除 $q - 1$,同时 $J_C(IF_q)$ 相对于 $\ell$ 的嵌入度为 $k$。
2. $J_C$ 上 $q^k$ 次弗罗贝尼乌斯自同态的特征多项式为 $P_k(X) = X^4 + sX^3 + (2q^k + (s^2 - τ_k)/4)X^2 + sq^kX + q^{2k}$。
3. 设 $\omega_k$ 是 $J_C$ 的一个 $q^k$ - 韦伊数,若 $\ell$ 整除 $\tau_k$,则 $\ell$ 在 $Q(\omega_k)$ 中不分歧。
注:$\ell$ 在 $Q(\omega_k)$ 中不分歧的概率约为 $1 - 1/\ell$,因此在基于配对的密码学相关情形中,所考虑的雅可比矩阵很可能是 $J(ℓ, q, k, τk)$ - 雅可比矩阵。
2. 弗罗贝尼乌斯自同态的矩阵表示
自同态 $\psi: J_C \to J_C$ 通过限制诱导出一个线性映射 $\overline{\psi}: J_C[\ell] \to J_C[\ell]$,所以 $\psi$ 在 $J_C[\ell]$ 上可以用矩阵 $M \in Mat_4(ZZ /