9、基于CPG的机器人运动控制:原理、设计与实现

基于CPG的四足机器人运动控制方案

基于CPG的机器人运动控制:原理、设计与实现

1. 引言

动物在复杂环境中高效移动的能力对其生存至关重要,如躲避捕食者、寻找食物和繁衍后代。自然界为有腿动物的运动问题提供了多种解决方案,不同类型的动物有着不同的身体结构和运动方式。神经生物学家对动物运动的生物学机制进行了广泛研究,近年来计算机模拟也被用于测试和研究基于神经生物学观察的运动回路模型。

在脊椎动物中,中央模式发生器(CPG)是运动控制器的重要组成部分,它位于脊髓中,能够在开环状态下产生协调的节律活动模式,且只需简单的输入信号就能对产生的模式进行调制,还能通过改变周期性节律模式来适应不同环境。

机器人技术从生物学中汲取了很多灵感,许多机器人的结构直接受到动物形态的启发。同时,机器人也开始为生物学研究提供帮助,成为测试生物学假设的科学工具。CPG被提出作为一种基于生物运动原理的高效控制策略,用于有腿机器人的运动控制。然而,CPG方法也存在一些缺点,如缺乏生成节律信号的学习方法,以及设计能够处理多种运动行为的控制架构仍是一个挑战。此外,CPG控制的工程实现也面临着计算能力的挑战,因此CPG专用的硬件实现受到了更多关注。

2. 运动解决方案方法

2.1 基于轨迹的方法

基于轨迹的方法通过数学模型预先计算肢体关节角度,以实现腿部按期望轨迹移动。该方法主要用于证明运动的稳定性,常用的稳定标准包括质心(CoM)、压力中心(CoP)和零力矩点(ZMP)。当这些标准中的一个位于支撑多边形内时,步态是稳定的。这种方法可以产生静态或动态稳定性,静态稳定性通过缓慢调整身体姿势来防止机器人摔倒,但通常会消耗更多能量;动态稳定性则依赖于保持ZMP或CoP在支撑多边形内,能实现更快

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值