9、图像局部滤波器:原理、应用与优化

图像局部滤波器:原理、应用与优化

1. 局部滤波器概述

局部滤波器是对像素点操作的扩展,其输出是局部邻域或窗口内像素值的函数,可表示为:
$Q[x, y] = f(I[x, y], …, I[x + \Delta x, y + \Delta y]), (\Delta x, \Delta y) \in W$
其中,$W$ 是以 $I[x, y]$ 为中心的窗口或局部邻域。窗口可以是任意形状和大小,但通常为正方形,大小为 $W \times W$ 像素,且 $W$ 为奇数,以明确定义窗口中心。随着窗口在输入图像上扫描,每个可能的位置都会根据上述公式生成一个输出像素。

局部滤波器可用于多种图像处理任务,如噪声去除或减少、边缘检测、边缘增强、线条检测和特征检测等。在软件实现中,输入和输出图像存储在帧缓冲区中,算法会为每个输出像素迭代,检索输入图像窗口内的像素并应用滤波函数。然而,这种实现方式最终会受到输入内存带宽的限制。

为了加速滤波过程,需要利用每个像素在多个窗口中被使用的特点。在流处理中,通过缓存像素来实现这一点,以便在后续窗口位置中重用这些像素。

1.1 像素缓存

对于 $W \times W$ 滤波器的流处理,需要一系列 $W - 1$ 行缓冲区。扫描窗口相当于图像在窗口中流动。行缓冲区可以与窗口并行放置,也可以与窗口串联放置,这两种方式在计算上是等效的。并行行缓冲区需要稍长一些(图像的全宽),但优点是它们与窗口和滤波器保持独立。

流访问模式有多种变化。如果资源有限且行缓冲区对于可用内存来说太长,可以按列而不是按行扫描图像。或者,将图像分割成一系列垂直条带进行处理,但这种方式会有一些开销,因为为了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值