green
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
19、人体活动识别:趋势与挑战
本文探讨了人体活动识别(HAR)的趋势与挑战,涵盖时间序列聚类与变化点检测、特征工程、模型选择与训练等关键环节。分析了传统机器学习与深度学习方法的优劣,提出了应对特征工程难题、模型选择困难和数据泛化问题的解决方案。此外,还介绍了HAR在健康监测等实际应用中的具体案例,并展望了其未来发展方向,包括实时性优化、复杂环境适应性和多模态融合等潜力领域。原创 2025-07-25 10:25:34 · 13 阅读 · 0 评论 -
18、人体活动识别:趋势与挑战
本文探讨了人体活动识别(HAR)在物联网环境中的应用、趋势及挑战。HAR在智能医疗、老年护理、智能家居等领域具有广泛应用,但其数据收集、处理和系统实施过程中面临诸多问题。文章分析了基于传感器和视觉的HAR技术,总结了当前的主要挑战及应对策略,并展望了未来发展方向,包括传感器改进、算法优化、多模态融合和应用拓展等。原创 2025-07-24 10:14:34 · 9 阅读 · 0 评论 -
17、工业4.0中机器学习在活动识别中的潜力揭秘
本文探讨了机器学习在工业4.0活动识别中的应用潜力,详细介绍了活动识别的流程、实际案例以及所面临的挑战和未来发展方向。文章分析了不同机器学习算法的特点及其适用场景,并强调了数据预处理、模型训练与优化的重要性。同时,通过制造业和物流行业的具体应用案例,展示了基于ML的AR技术如何提升生产效率、优化工作流程并实现精准绩效评估。尽管存在数据存储、实施成本、实时性及隐私安全等问题,但通过边缘计算、分布式学习和多模态数据融合等技术,有望推动工业智能化进一步发展。原创 2025-07-23 12:21:02 · 6 阅读 · 0 评论 -
16、工业4.0中机器学习在活动识别中的潜力揭示
本文探讨了工业4.0背景下机器学习在活动识别(AR)和人类活动识别(HAR)中的应用与潜力。从机器学习的基本分类到HAR的技术方法,再到其在工业环境中的实际应用案例,全面分析了这一领域的发展趋势与挑战。重点包括数据收集与预处理、模型选择与优化、以及HAR在工人安全、质量控制、过程优化等方面的应用。文章还展望了未来技术发展的方向,并提出了推动技术进步的建议,旨在为工业4.0环境下的智能化生产提供参考。原创 2025-07-22 12:17:19 · 7 阅读 · 0 评论 -
15、延长电池寿命的高效传感与分类及工业4.0中机器学习在活动识别的应用
本文探讨了一种基于概率级联二进制分类器的高效传感与分类方法,旨在延长可穿戴设备的电池寿命,并提升工业4.0背景下活动识别的准确性与资源效率。通过在真实硬件系统和多个数据集上的实验评估,验证了该方法在降低能耗、减少内存使用以及提高分类准确率方面的有效性。此外,文章分析了该方法的局限性,并提出了未来的改进方向,为工业4.0中智能制造和人类活动识别的研究提供了有价值的参考。原创 2025-07-21 11:13:43 · 5 阅读 · 0 评论 -
14、高效传感与分类以延长电池续航
本文探讨了在人类活动识别系统中如何通过高效的传感与分类方法延长电池续航。研究利用级联二分类器和多类分类器,结合不同采样频率和特征选择策略,优化资源消耗,同时保持较高的分类准确率。实验分析了不同强度活动(轻度、中度、剧烈)对采样频率和特征数量的需求差异,并提出了动态调整采样频率和特征集的级联分类框架。结果表明,该方法能够在保证性能的同时有效降低功耗,适用于可穿戴设备等电池供电场景。原创 2025-07-20 10:15:19 · 4 阅读 · 0 评论 -
13、高效传感与分类以延长电池续航
本文探讨了一种基于概率级联分类器的高效传感与分类方法,旨在延长可穿戴设备的电池续航。通过分治策略,将活动分为轻、中、剧烈强度组,分别调整采样频率和特征复杂度,从而在保证分类精度的同时降低能耗。文章提出了个性化的级联分类器结构,结合二进制分类器和多类组分类器,并通过实验验证了该方法在两个数据集上的性能优势,证明其在资源效率和实时性方面的有效性。原创 2025-07-19 13:19:56 · 5 阅读 · 0 评论 -
12、基于非接触传感与可穿戴设备的活动监测及高效分类技术
本文探讨了基于非接触传感与可穿戴设备的活动监测及高效分类技术。重点介绍了利用Wi-Fi信号进行社交活动识别的方法、可穿戴设备的发展与应用,以及传统活动监测技术的不足。针对传统方法在资源利用和适应性方面的缺陷,提出了一种概率级联二进制分类器,通过动态调整采样频率和特征提取,实现在降低能耗的同时提高分类性能。文章还分析了本地数据处理的挑战以及应对策略,并探讨了该技术在医疗保健、运动健身和智能家居等领域的应用前景。最后,展望了未来技术的发展方向,包括智能化、个性化和集成化的发展趋势。原创 2025-07-18 16:33:18 · 5 阅读 · 0 评论 -
11、基于非接触式传感的多用户活动监测
本研究提出了一种基于Wi-Fi信道状态信息(CSI)的非接触式多用户活动监测方法,利用两级数据融合策略结合卡尔曼滤波、FastICA和深度学习网络,实现了对多种室内社交活动的高效识别。实验表明,该方法在多用户动态和静态活动分类中取得了90%的平均准确率,展现出在智能家居、医疗保健和安全监控等领域的广泛应用前景。原创 2025-07-17 14:45:43 · 10 阅读 · 0 评论 -
10、深度学习在人类活动识别中的应用综述
本文综述了深度学习在人类活动识别(HAR)中的应用,探讨了该领域面临的主要挑战。包括分类器冗余、分布差异(用户、时间、传感器差异)、复合活动识别难题、并发活动识别等技术问题,以及多占用者活动管理和计算成本的限制。同时,文章还讨论了隐私保护和模型可解释性问题,并提出了未来发展方向,如优化模型结构、解决数据问题、加强隐私保护和提高可解释性。文章旨在为推动人类活动识别技术的发展提供参考。原创 2025-07-16 16:46:18 · 5 阅读 · 0 评论 -
9、深度学习在人体活动识别中的应用与挑战
本文探讨了深度学习在人体活动识别中的应用与挑战。首先介绍了深度学习模型(如CNN和LSTM)在时间特征提取中的作用,以及多模态数据融合的方法。随后分析了标注数据稀缺和类别不平衡问题,并探讨了无监督学习、半监督学习和数据增强等解决方案。同时,文章总结了基于CNN、LSTM及混合模型的实际应用案例,并展望了未来发展趋势,包括更高效的特征提取方法、更智能的半监督算法、解决类别不平衡的新策略以及跨领域应用前景。原创 2025-07-15 12:17:56 · 5 阅读 · 0 评论 -
8、深度学习在人类活动识别中的综合应用
本文综述了深度学习在人类活动识别(HAR)中的综合应用,探讨了HAR的主要挑战,包括特征工程、数据标注稀缺、用户与传感器差异、复合活动识别、系统可行性及隐私问题。同时,文章详细分析了深度学习如何通过自动特征学习、多样化网络架构和灵活的设计解决这些挑战,并列举了多个基于传感器和视觉的公开数据集。文章还介绍了深度学习在智能家居、医疗保健和健身跟踪等领域的应用案例,并展望了未来发展趋势,如模型轻量化、多模态融合、可解释性深度学习和边缘计算。原创 2025-07-14 15:13:41 · 7 阅读 · 0 评论 -
7、轮椅使用者坐姿监测系统:智能识别与优化策略
本文介绍了一种专为轮椅使用者设计的坐姿监测系统——i-KuXin。该系统采用16个FSR传感器采集坐姿数据,并通过三种机器学习技术(SVM、KNN和ANN)实现智能坐姿识别。实验结果表明,所有方法的识别准确率均超过90%,其中SVM在准确率和计算成本方面表现最优。通过传感器优化分析,使用5-6个关键传感器即可在保持高精度的同时降低系统复杂度。系统未来将在模型优化、传感器升级及多场景应用等方面进一步拓展,为预防长期肌肉骨骼疾病提供有效解决方案。原创 2025-07-13 10:03:30 · 4 阅读 · 0 评论 -
6、轮椅使用者坐姿监测系统的设计与实现
本文介绍了一种针对轮椅使用者的坐姿监测系统i-KuXin,旨在通过优化传感器的选择与布局,结合机器学习技术,实现对常见坐姿的准确识别。系统采用16个FSR传感器,基于Arduino MEGA 2560进行数据采集,并通过蓝牙模块传输数据。经过实验验证和数据预处理,结合人工神经网络(ANNs)等算法,实现了高精度、低成本的坐姿监测。该系统具有非侵入性、高自主性和适应性强等优势,在医疗康复和健康管理领域具有广阔的应用前景。原创 2025-07-12 10:59:39 · 5 阅读 · 0 评论 -
5、可穿戴传感器网络助力人体活动识别
本博客探讨了可穿戴传感器网络在人体活动识别中的应用,涵盖医疗、体育和康复领域。重点研究了基于惯性测量单元(IMU)和体域网(BSN)的步态分析在帕金森病诊断中的作用,以及智能体育中骑手与马互动的运动学分析。此外,还讨论了可穿戴传感器在轮椅使用者坐姿监测中的重要性,并比较了传统机器学习与深度学习在活动识别中的优劣。博客总结了可穿戴传感器网络的优势与挑战,并展望了其在未来多领域的广泛应用前景。原创 2025-07-11 14:35:31 · 5 阅读 · 0 评论 -
4、基于可穿戴传感器网络的人体活动识别方法及应用
本博客围绕基于可穿戴传感器网络的人体活动识别方法及其应用展开,详细介绍了数据处理、特征提取与选择、活动识别算法等内容,并提出了一种结合RLDA特征选择和K-SVD字典学习的稀疏表示识别方法。实验结果表明,该方法在识别精度上优于传统分类算法。此外,博客还探讨了可穿戴传感器在人体交互同步分析中的应用,展示了其在医疗保健和智能交互领域的广阔前景。原创 2025-07-10 11:57:29 · 8 阅读 · 0 评论 -
3、基于可穿戴传感器网络的人类活动识别方法
本文介绍了一种基于可穿戴传感器网络的人类活动识别方法,结合硬件设计与算法优化,实现了对人体运动的高精度捕捉和分析。系统使用MPU9250传感器节点和无线传输技术,结合多传感器数据融合、零速度区间检测和扩展卡尔曼滤波等算法,提高了姿态估计和定位的准确性。实验验证表明,该方法在医疗领域的步态监测、跌倒检测、疲劳监测以及体育领域的运动分析和训练优化中具有广泛应用前景。原创 2025-07-09 10:06:09 · 5 阅读 · 0 评论 -
2、基于过程挖掘的人类习惯发现
本文探讨了如何利用过程挖掘技术从智能空间中的传感器日志中自动发现人类习惯。通过将传感器日志转换为事件日志,并采用基于时间属性的离散化策略进行分割,结合 Petri 网建模来评估分割结果。实验使用了 CASAS 项目的 aruba 数据集,验证了方法的有效性。同时,文章也分析了当前方法的局限性,并提出了未来的改进方向。原创 2025-07-08 14:47:36 · 4 阅读 · 0 评论 -
1、利用过程挖掘发现人类习惯:现状与研究挑战
本文探讨了如何利用过程挖掘技术发现和建模人类习惯,重点分析了在智能空间中通过传感器数据收集、事件日志转换及过程发现算法挖掘人类日常行为模式的方法。文章介绍了相关背景、技术优势及应用案例,并讨论了数据质量、模型复杂性和隐私保护等研究挑战,同时提出了未来发展方向,如多源数据融合和智能决策支持,以推动个性化和智能化服务的发展。原创 2025-07-07 15:26:23 · 5 阅读 · 0 评论