一步步实现自己的智能体:基于 LangGraph 快速构建

目录

一步步实现自己的智能体:基于 LangGraph 快速构建

🧠 一、LangGraph 是什么?

✅ 它解决了什么问题?

🧩 二、核心概念说明

🚀 三、快速实战:构建一个“日报生成助手”Agent

场景设定:

🔧 第一步:安装依赖

📦 第二步:定义状态结构

🧩 第三步:定义各阶段 Node(模块)

🔄 第四步:构建 LangGraph 流程图

▶ 第五步:运行 Agent 并获取结果

🖼 六、流程图可视化结构

🧠 七、优势分析:LangGraph 为什么值得选?

🛠 八、可扩展功能推荐

🔮 九、结语


一步步实现自己的智能体:基于 LangGraph 快速构建

如果你已经理解了什么是 Agentic AI,并看过 Auto-GPT、ReAct、Claude 等系统的设计理念,接下来的问题就是:我怎么能快速构建一个属于自己的智能体?

本篇将带你一步步使用开源框架 LangGraph 构建一个具有“状态感知 + 工具使用 + 控制逻辑”的轻量级 Agent,适用于任务规划、对话机器人、数据助手等应用。


🧠 一、LangGraph 是什么?

LangGraph = LangChain + 有向状态图(Graph)思想

它让你将一个 Agent 的执行过程拆分成“节点状态 + 状态转换规则”,最终构成一个可以控制逻辑流转的任务图

✅ 它解决了什么问题?

  • 多步任务难以追踪和调试?➡ 状态图可视化

  • 工具链调用流程混乱?➡ 明确定义各阶段逻辑

  • 不同输入走不同路径?➡ 状态转移灵活定义


🧩 二、核心概念说明

名称 作用说明
Node 图中的一个“步骤节点”,可连接工具、模型或函数
Edge 表示不同节点之间的转移路径
State 每次调用时的上下文(变量 / 中间结果)
Graph 所有 Node + Edge 构成的执行流程图
Runner 控制整图运行的调度器,支持异步/阻塞执行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值