目录
一步步实现自己的智能体:基于 LangGraph 快速构建
如果你已经理解了什么是 Agentic AI,并看过 Auto-GPT、ReAct、Claude 等系统的设计理念,接下来的问题就是:我怎么能快速构建一个属于自己的智能体?
本篇将带你一步步使用开源框架 LangGraph 构建一个具有“状态感知 + 工具使用 + 控制逻辑”的轻量级 Agent,适用于任务规划、对话机器人、数据助手等应用。
🧠 一、LangGraph 是什么?
LangGraph = LangChain + 有向状态图(Graph)思想
它让你将一个 Agent 的执行过程拆分成“节点状态 + 状态转换规则”,最终构成一个可以控制逻辑流转的任务图。
✅ 它解决了什么问题?
-
多步任务难以追踪和调试?➡ 状态图可视化
-
工具链调用流程混乱?➡ 明确定义各阶段逻辑
-
不同输入走不同路径?➡ 状态转移灵活定义
🧩 二、核心概念说明
名称 | 作用说明 |
---|---|
Node | 图中的一个“步骤节点”,可连接工具、模型或函数 |
Edge | 表示不同节点之间的转移路径 |
State | 每次调用时的上下文(变量 / 中间结果) |
Graph | 所有 Node + Edge 构成的执行流程图 |
Runner | 控制整图运行的调度器,支持异步/阻塞执行 |