做了两年多REID的实际使用效果展示

本文介绍了在MSMT17上使用的最先进的模型,其rank1性能达到88%,主要依赖于FastReid网络和少量训练数据(约10万ID)。模型对姿态变化的识别稳健,但衣物相似行人识别仍有提升空间。作者计划尝试使用Transform技术进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 这是用我们目前相对最好的模型在MSMT17上测试的结果展示,我们在MSMT17上的rank1目前在88左右。
    训练数据:本模型的训练集用到了MSMT17的训练集加上一些其他数据,总共不到10wID
    网络:网络用的就是fastreid,改动的地方不多,fastreid已经很优秀了,大胆用吧
    展示图片说明:我们总共展示了8张大图,每张大图的左上角小图为query,后面是top19按相似度依次排列,gallery上有“True”的表示识别正确,第二排红色数字表示余弦相似度,第三排表示图片的ID,大红线最右边的miss图片表示和query是相同ID却没有被top19识别到。
    总结一下:可见我们的模型对于不同人体姿态的识别还是相对稳定的,但是对衣服相似的行人的表现还是不够好。
    展望:最近想试试Transform

msmt1

msmt2

 

msmt3

 

msmt4

 

msmt5

 

msmt6

 

msmt7

 

msmt8

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值