Python pandas 各类 操作 备忘

这篇博客详细介绍了Pandas库在数据处理中的常见操作,包括创建DataFrame、转换列、选择记录、新增和删除行与列、数据聚合与分组、数据透视、统计分析以及读写文件等。通过实例展示了如何利用Pandas进行数据清洗、合并和统计计算,对于理解Pandas的功能和提升数据处理能力非常有帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

>>> import pandas as pd

>>> factors={'2021':36.45,'2020':35.43,'2019':34.65,'2018':33.9,'2017':33.14}

# 必须加index,index中是列表,列表个数,即为记录数。
# 下面是以关键字为列名,共5列
>>> df = pd.DataFrame(factors,index=[1])

# 结果如下:
    2021   2020   2019  2018   2017
1  36.45  35.43  34.65  33.9  33.14

# 下面是分成2列,即key为一列,item为一列
>>> df = pd.DataFrame( list(zip(factors.keys(),factors.values())) ,columns=['Year','Factor'])

   Year  Factor
0  2021   36.45
1  2020   35.43
2  2019   34.65
3  2018   33.90
4  2017   33.14

# 选择记录
>>> df[2:4]
   Year  Factor
2  2019   346.5
3  2018   339.0

# 新增一行记录 'Year'列=2016 (如果index已存在,则直接修改)
>>> df.loc[5,'Year']=2016
>>> df
   Year  Factor
0  2021   36.45
1  2020   35.43
2  2019   34.65
3  2018   33.90
4  2017   33.14
5  2016     NaN

# 删除某一行记录, axis=0 为默认值, =0 表示删除行,=1删除列。
>>> df.drop(5,axis=0)
   Year  Factor
0  2021   36.45
1  2020   35.43
2  2019   34.65
3  2018   33.90
4  2017   33.14

# 增加一列空列
>>> df['memo'] = '' #新增列值为空
>>> df = df.reindex(columns=['Year','Factor','memo'])        #新增列值为Nan
   Year  Factor memo
0  2021   36.45     
1  2020   35.43 &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

危凌天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值