假设检验又称为零假设,是数理统计学中根据一定假设条件由样本推断总体的一种方法,是用来判断样本与样本、样本与总体所产生差异原因的一种统计推断方法。其基本原理是先对总体的参数或分布提出假设,然后选取合适的统计量,并由实测的样本计算出统计量的值,再根据预先给定的显著性水平进行检验,最终做出拒绝或接受假设的推断。
14.1.1 假设检验的基本原理
在统计学中,假设一般用来指对总体参数所做的假定性说明。而假设检验是指先提出一个假设,一般是对总体参数或总体分布形态的假设,然后通过检验样本统计量的差异来推断总体参数之间是不是存在差异。假设检验是以最小概率为标准,对总体的状况所做出的假设进行判断。而最小概率是指一个发生概率接近0的事件,是一种不可能出现的事件。
在统计学内,假设检验被划分为原假设(虚无假设)和备择假设(对立假设)。在检验之前需要先确定原假设和备择假设。
(1)原假设。原假设通常用H0表示。
(2)备择假设。备择假设是与原假设对立的一种假设,通常用H1表示。备择假设是在原假设被否认时可能成立的另外一种结论。在实际分析中,一般情况是需要将期望出现的结论作为备择假设。
确定原假设和备择假设之后,还需要一个统计量来决定接受/拒绝原假设或备择假设。其后,需要利用统计的分布及显著水平,来确定检验统计量的杜绝域。在给定的显著水平α下,检验统计量的可能取值范围被分为小概率与大概率区域。
(1)小概率区域。小概率区域是原假设的拒绝区域,其概率不超过显著水平α的区域。
(2)大概率区域。大概率区域是原假设的接受区域,其概率为1-α的区域。
当样本统计量位于拒绝域内,则拒绝原假设而接受备择假设;当样本统计量位于接受区域内,则接受原假设。
14.1.2 假设检验中的错误类型
虽然小概率事件发生的可能性很小,但仍有发生的可能。因此