数据库往往成为软件性能的瓶颈。好的数据对于高性能系统至关重要。以下是 11 种有效的数据库优化技术:
1. 索引
索引:索引是提供快速查找机制的数据结构,可显著提高查询性能。通过创建排序的数据结构来工作,该结构允许数据库引擎快速定位满足 WHERE 子句的行。 虽然索引可以加速 SELECT 查询,但它们可能会减慢写入操作,因此在读取和写入性能之间取得平衡至关重要。
CREATE INDEX idx_username ON users(username);
复合索引:复合索引涉及多个列,对于根据多个条件进行过滤或排序的查询非常有用。
CREATE INDEX idx_name_age ON employees(name, age);
2. 规范化和反规范化
规范化:此过程组织数据以最大限度地减少冗余和依赖性,从而降低数据异常的可能性。通过将大表分解为较小的相关表,规范化可确保数据一致性。但是,它可能会导致更复杂的查询。
比如:
CREATE TABLE customers (
customer_id INT PRIMARY KEY,
customer_name VARCHAR(100),
address VARCHAR(255)
);
CREATE TABLE orders (
order_id INT PRIMARY KEY,
customer_id INT,
order_date DATE,
FOREIGN KEY (customer_id) REFERENCES customers(customer_id)
);
反规范化:虽然规范化可以减少冗余,反规范化会引入可控的冗余来提高查询性能,特别是对于读取密集型操作。这可能有策略地添加冗余列或表。
比如,上述表格用反规范化的方式建立:
CREATE TABLE denormalized_orders (
order_id INT PRIMARY KEY,