介绍
对象检测是一项计算机视觉任务,涉及识别和定位图像或视频中的对象。它是许多应用的重要组成部分,例如自动驾驶汽车、机器人和视频监控。
多年来,已经开发了许多方法和算法来查找图像中的对象及其位置。卷积神经网络对于此类任务有着非常好的性能和质量。
用于此任务的最流行的神经网络之一是 YOLO,由 Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi 在 2015 年在他们著名的研究论文“You Only Look Once: Unified, Real-Time Object Detection”中创建。
从那时起,YOLO 已经出现了相当多的版本。最近的版本可以做的不仅仅是对象检测,还可做对象分割、对象追踪等、姿势识别等任务,本系列文章展示了如何使用YOLOv8。
本系列文章分为3个大模块:
- 如何使用对象识别:我们将使用预先训练的好的模型来检测常见的对象类,比如猫和狗。
- 如何训练自己的模型:我将展示如何训练自己的模型来检测您选择的特定对象类型,以及如何准备训练数据。
- 应用模型:最后将创建一个 Web 应用程序,使用自定义训练模型直接在 Web 浏览器中检测图像上的对象。
YOLOv8适用场景
YOLOv8可以解决分类、对象检测和图像分割问题。所有这些方法都以不同的方式检测图像或视频中的对象,如下图所示: