本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。
欢迎大家订阅我的专栏:算法题解:C++与Python实现!
附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总
【题目来源】
洛谷:P5683 [CSP-J2019 江西] 道路拆除 - 洛谷
【题目描述】
A 国有 n n n 座城市,从 1 ∼ n 1∼n 1∼n 编号。 1 1 1 号城市是 A 国的首都。城市间由 m m m 条双向道路连通,通过每一条道路所花费的时间均为 1 1 1 单位时间。
现在 A 国打算拆除一些不实用的道路以减小维护的开支,但 A 国也需要保证主要线路不受影响。因此 A 国希望道路拆除完毕后,利用剩余未被拆除的道路,从 A 国首都出发,能到达 s 1 s_1 s1 号与 s 2 s_2 s2 号城市,且所要花费的最短时间分别不超过 t 1 t_1 t1 与 t 2 t_2 t2(注意这是两个独立的条件,互相之间没有关联,即不需要先到 s 1 s_1 s1 再到 s 2 s_2 s2)。
A 国想请你帮他们算算,在满足上述条件的情况下,他们最多能拆除多少条道路。 若上述条件永远无法满足,则输出 − 1 −1 −1。
【输入】
第一行两个正整数 n , m n,m n,m,表示城市数与道路数。
接下来 m m m 行,每行两个正整数 x , y x,y x,y,表示一条连接 x x x 号点与 y y y 号点的道路。
最后一行四个整数,分别为 s 1 , t 1 , s 2 , t 2 s_1,t_1,s_2,t_2 s1,t1,s2,t2。
【输出】
仅一行一个整数,表示答案。
【输入样例】
5 6
1 2
2 3
1 3
3 4
4 5
3 5
5 3 4 3
【输出样例】
3
【算法标签】
《洛谷 P5683 道路拆除》 #最短路# #CSP-J入门级# #2019#
【代码详解】
#include <bits/stdc++.h>
using namespace std;
int n, m, u, v, s_1, t_1, s_2, t_2; // 输入参数
int dist[3005], ans, sum; // 距离数组和结果变量
vector<int> ve[3005]; // 图的邻接表表示
// 路径节点结构体
struct Node
{
int len; // 路径长度
vector<int> router; // 路径节点序列
};
queue<Node> qu; // BFS队列
vector<Node> router_1, router_2; // 存储两条路径的所有可能
bool vis_1[3005][3005], vis_2[3005][3005]; // 访问标记数组
// BFS搜索从起点到终点的所有可能路径
vector<Node> bfs(int x, int y)
{
vector<Node> res = {}; // 存储结果路径
memset(dist, 0x3f, sizeof(dist)); // 初始化距离为无穷大
dist[1] = 0; // 起点距离为0
Node sn = {}; // 初始节点
sn.len = 1;
sn.router.push_back(1);
qu.push(sn);
while (qu.size())
{
sn = qu.front();
qu.pop();
u = sn.router[sn.len-1]; // 当前路径的最后一个节点
// 如果到达目标节点且路径长度满足条件
if (u == x && sn.len-1 <= y)
{
res.push_back(sn);
continue;
}
// 遍历当前节点的所有邻居
for (int i = 0; i < ve[u].size(); i++)
{
v = ve[u][i];
// 如果找到更短的路径
if (dist[v] >= sn.len)
{
dist[v] = sn.len;
Node tmp = {};
tmp.len = sn.len + 1;
tmp.router = sn.router;
tmp.router.push_back(v);
qu.push(tmp);
}
}
}
return res;
}
int main()
{
cin >> n >> m; // 输入节点数和边数
// 构建图的邻接表
for (int i = 1; i <= m; i++)
{
cin >> u >> v;
ve[u].push_back(v);
ve[v].push_back(u);
}
cin >> s_1 >> t_1 >> s_2 >> t_2; // 输入两条路径的参数
// 搜索两条路径的所有可能
router_1 = bfs(s_1, t_1);
router_2 = bfs(s_2, t_2);
// 如果任意一条路径不存在可行解
if (!router_1.size() || !router_2.size())
{
cout << "-1";
return 0;
}
ans = m; // 初始化结果为边数
// 遍历第一条路径的所有可能
for (int i = 0; i < router_1.size(); i++)
{
Node sn_1 = router_1[i];
if (sn_1.len-1 >= ans) continue; // 剪枝
memset(vis_1, 0, sizeof(vis_1)); // 重置访问标记
sum = 0;
// 标记第一条路径的所有边
for (int j = 1; j < sn_1.len; j++)
{
vis_1[sn_1.router[j-1]][sn_1.router[j]] = 1;
vis_1[sn_1.router[j]][sn_1.router[j-1]] = 1;
}
// 遍历第二条路径的所有可能
for (int j = 0; j < router_2.size(); j++)
{
Node sn_2 = router_2[j];
if (sn_2.len-1 >= ans) continue; // 剪枝
sum = sn_1.len - 1; // 第一条路径的边数
memcpy(vis_2, vis_1, sizeof(vis_2)); // 复制访问标记
// 统计第二条路径的新增边数
for (int k = 1; k < sn_2.len; k++)
{
if (!vis_2[sn_2.router[k-1]][sn_2.router[k]])
{
vis_2[sn_2.router[k-1]][sn_2.router[k]] = 1;
vis_2[sn_2.router[k]][sn_2.router[k-1]] = 1;
sum++;
}
}
ans = min(ans, sum); // 更新最小边数
}
}
cout << m - ans << endl; // 输出结果(总边数减去最小共用边数)
return 0;
}
【运行结果】
5 6
1 2
2 3
1 3
3 4
4 5
3 5
5 3 4 3
3