深度学习端上部署工具

深度学习端上部署工具

模型公司通用性别说明
tf-litetensorflow,开源

通用性最强,与 tensorflow 适配完美,不过性能一般

支持CPU和GPU

roadmap 中预计年底将实现对全系列rnn以及control flow的支持,值得期待!
TensorRTnvidia,闭源支持CPU和GPU仅支持nvidia gpu系列产品推理,平台的限定使得无法推广到一般的移动端设备使用
OpenCV
mnn阿里巴巴,开源踩在巨人的肩膀上进行研发,起点高,端上性能强悍,据说性能强于ncnn

吸取了最近两年开源的移动端推理框架的各种优秀成果

  • 针对conv3x3s1优化的winograd;
  • 针对网络图的优化以及层间数据复用;
  • 为提高访存效率,加入nchw4策略;
  • 支持int8低比特网络模型压缩及加速;

硬件支持:

  • cpu:为追求速度的极限,使用纯汇编实现了arm32、arm64两种版本的kernel;
  • gpu:支持metal、opencl、opengl、vulkan,全覆盖目前主流移动终端版本gpu,特别是对次时代框架vulkan的支持
TNN腾讯,开源支持CPU和GPU
ncnn腾讯,开源

大量手写汇编级别优化,移动端性能强悍

支持CPU和GPU

bolt华为,开源支持CPU和GPU官方数据中给出了端设备上bert的推理性能数据
mace小米,开源
paddle-lite百度,开源
pytorch-mobilefacebook,开源
caffe2facebook,开源
tvm陈天奇团队,开源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI吃大瓜

尊重原创,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值