深度学习1(深度学习和机器学习的区别,神经网络)

深度学习和机器学习的区别

        深度学习和机器学习都是人工智能(AI)的重要分支,但它们在方法、应用场景和技术细节上有显著区别。

机器学习通过算法让计算机从数据中学习规律,并做出预测或决策。核心是特征工程人工提取数据的关键特征)和模型选择(如决策树、SVM、随机森林等)。数据量小、特征明确、需快速部署或解释性强的场景。
深度学习是机器学习的一个子领域,基于人工神经网络(尤其是深层结构)。其核心是自动学习特征,无需人工干预,通过多层神经网络直接从原始数据中提取高层次特征。数据量大(尤其是图像、语音等)、问题复杂(如自然语言理解)、且算力充足时

神经网络

        人工神经网络(Artificial Neural Network,简写为ANN)也简称为神经网络(NN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的 计算模型。

        经典的神经网络结构包含三个层次的神经网络。分别输入层,输出层以及隐藏层。

输入层

输入层是神经网络的“入口”,负责接收原始数据(如图像像素、文本词向量、传感器信号等)

将输入数据转换为神经网络可处理的数值形式(通常是向量或矩阵)

隐藏层

通过权重和激活函数对输入数据进行非线性变换,逐步提取高层次特征。

每一层隐藏层都会学习数据的不同抽象表示(如从边缘→纹理→物体部件→完整物体)

输出层

根据任务类型输出预测结果(如类别标签、数值、概率分布等)

输出层的设计需匹配具体任务(分类、回归、生成等)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值