6、企业 JavaBean 环境与部署全解析

企业 JavaBean 环境与部署全解析

1. 编程限制

在开发企业 JavaBean 时,有一些编程限制需要遵守,违反这些规则可能会影响应用的可移植性等特性:
- 避免直接 I/O 操作 :不要尝试在 bean 内部使用标准 I/O 设备(如键盘/屏幕显示)进行直接通信,服务器通常不允许这种操作,这也违反了 J2EE 架构。
- 不直接访问文件和目录 :不要使用 java.io 包直接访问文件和目录,应使用资源管理器 API(如 JDBC)来存储和检索数据,否则 bean 可能会依赖特定的机器,且文件系统 API 不太适合 bean。
- 其他避免事项 :编程时要避免使用 AWT 进行输出、使用键盘/屏幕进行 I/O、创建/设置/获取类加载器、加载本地库、使用读写静态变量、获取代码源的安全策略信息、将 bean 实例用作套接字服务器或管理线程等。

不过,违反上述限制并不一定意味着应用无法运行,在实际中,有时出于性能等原因可能会违反这些规则,但要清楚可能会付出的代价,如牺牲可移植性,并且要确保在未来需要时能够轻松修复。

2. 企业 Bean 运行环境要点

企业 bean 被部署到一个环境中并在该环境中执行,需要关注两个重要问题:
- 业务逻辑定制 :应用组装者和部署者应能够在不更改源代码的情况下定制 bean 的业务逻辑。
- 外部资源访问 :即使编写 bean 代码的提供者不知道资源的真实

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值